研究生: |
徐睿岑 Xu, Rui-Cen |
---|---|
論文名稱: |
氧化態不明確配基錯合物應用於可逆-失活自由基聚合反應 Reversible-Deactivation Radical Polymerization Mediated by Non-Innocent Ligand Complex |
指導教授: |
黃郁文
Huang, Yu-Wen |
口試委員: |
彭之皓
Peng, Chi-How 王潔 Wang, Jane |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2023 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | 高分子 、有機金屬 |
外文關鍵詞: | Non-innocent ligand |
相關次數: | 點閱:29 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目的為合成新型有機鎳金屬錯合物Ni(tralen) (tralenH2 = N, N’-di(cyclohepta-2,4,6-trien-1-one-2-yl)-1,2-diaminobenzene) 並且應用於乙烯基單體如醋酸乙烯酯 (VAc)、N-乙烯基-2-吡咯烷酮 (NVP) 和丙烯酸甲酯 (MA) 的自由基聚合反應中。聚合反應加入Ni(tralen) 後其高分子分子量皆隨著單體轉化率呈線性增長,且與理論分子量相近,符合可逆-去活化自由基聚合反應的特徵。並且透過鏈延伸 (chain extension) 反應證明了聚醋酸乙烯酯之鏈尾端官能基具有活性,且從MALDI-TOF質譜儀證明其鏈尾端結構。另外,運用鏈延伸方法成功合成出了嵌端共聚物 (block copolymer) PMA-b-PVAc,說明了 Ni(tralen) 在自由基聚合反應中為有效的調控劑。接著,通過核磁共振光譜 (NMR) 和電子順磁共振光譜 (EPR) 顯示其在聚合反應中具有單電子的訊號,並利用X射線光電子能譜儀比較錯合物及巨型引發劑,推測是由 tralen 配位基上的七元環所提供單電子,故推測此配基中心金屬能做為架橋與反應中自由基結合形成休眠物種,使其具有氧化態不明確配位基 (Non-innocent ligand) 之特性。後續也針對不同金屬中心之錯合物Ni(tralen)、Zn(tralen) 和 Ca(tralen) 進行聚合結果之比較,並嘗試說明其差異。
The objective of this study is to synthesize a novel nickel complex, Ni(tralen) (tralenH2 = N, N'-di(cyclohepta-2,4,6-trien-1-one-2-yl)-1,2-diaminobenzene), and apply it in the radical polymerization reactions of vinyl monomers such as vinyl acetate (VAc), N-vinyl-2-pyrrolidone (NVP), and methyl acrylate (MA). The molecular weights of the product from the polymerization from Ni(tralen) increase linearly with monomer conversion and are close to the theoretical values, exhibiting the characteristics of reversible-deactivation radical polymerization. The chain-end functionality in poly (vinyl acetate) is demonstrated through the chain extension, and further confirmed by MALDI-TOF mass spectrometry. Additionally, the chain extension was successfully achieved to provide the block copolymer of methyl acrylate and vinyl acetate (PMA-b-PVAc), indicating that Ni(tralen) is an effective mediator for radical polymerization. To investigate the mechanism, nuclear magnetic resonance spectroscopy (NMR) and electron paramagnetic resonance spectroscopy (EPR) revealed the presence of single electron signal during the polymerization. X-ray photoelectron spectroscopy was employed to compare the complex with a macroinitiator, indicating that the single-electron is provided from the seven-membered ring on the tralen ligand to form dormant species. The electron combines with the propagating radical to form the dormant species via the metal center. Therefore, Ni(tralen) exhibits the characteristics of a complex coordinate by a non-innocent ligand. Subsequently, a comparison of the polymerization results is conducted for complexes with different metal-center, including Ni(tralen), Zn(tralen), and Ca(tralen), to investigate their differences.
1. Yokozawa, T.; Yokoyama, A., Chain-growth polycondensation: The living polymerization process in polycondensation. Progress in Polymer Science 2007, 32 (1), 147-172.
2. Choi, K. Y.; McAuley, K. B., Step-Growth Polymerization. In Polym React Eng, 2007; pp 273-314.
3. Colombani, D., Chain-growth control in free radical polymerization. Progress in Polymer Science 1997, 22 (8), 1649-1720.
4. Androvič, L.; Bartáček, J.; Sedlák, M., Recent advances in the synthesis and applications of azo initiators. Res Chem Intermed 2016, 42 (6), 5133-5145.
5. Gruber, H. F., Photoinitiators for free radical polymerization. Progress in Polymer Science 1992, 17 (6), 953-1044.
6. Farina, M., Chemistry and kinetics of the chain transfer reaction. Makromolekulare Chemie. Macromolecular Symposia 1987, 10-11 (1), 255-272.
7. Shipp, D. A., Reversible-Deactivation Radical Polymerizations. Polymer Reviews 2011, 51 (2), 99-103.
8. Stepto, R. F. T., Dispersity in polymer science (IUPAC Recommendation 2009). Polymer International 2010, 59 (1), 23-24.
9. Grubbs, R. B., Nitroxide-Mediated Radical Polymerization: Limitations and Versatility. Polymer Reviews 2011, 51 (2), 104-137.
10. Destarac, M.; Charmot, D.; Franck, X.; Zard, S. Z., Dithiocarbamates as universal reversible addition-fragmentation chain transfer agents. Macromolecular Rapid Communications 2000, 21 (15), 1035-1039.
11. Matyjaszewski, K., Atom Transfer Radical Polymerization (ATRP): Current Status and Future Perspectives. Macromolecules 2012, 45 (10), 4015-4039.
12. Hurtgen, M.; Detrembleur, C.; Jerome, C.; Debuigne, A., Insight into Organometallic-Mediated Radical Polymerization. Polymer Reviews 2011, 51 (2), 188-213.
13. Georges, M. K.; Veregin, R. P. N.; Kazmaier, P. M.; Hamer, G. K., Narrow molecular weight resins by a free-radical polymerization process. Macromolecules 1993, 26 (11), 2987-2988.
14. Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang, S. H., Living Free-Radical Polymerization by Reversible Addition−Fragmentation Chain Transfer: The RAFT Process. Macromolecules 1998, 31 (16), 5559-5562.
15. Perrier, S., 50th Anniversary Perspective: RAFT Polymerization—A User Guide. Macromolecules 2017, 50 (19), 7433-7447.
16. Wang, J.-S.; Matyjaszewski, K., Controlled/"living" radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes. Journal of the American Chemical Society 1995, 117 (20), 5614-5615.
17. Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T., Polymerization of Methyl Methacrylate with the Carbon Tetrachloride/Dichlorotris- (triphenylphosphine)ruthenium(II)/Methylaluminum Bis(2,6-di-tert-butylphenoxide) Initiating System: Possibility of Living Radical Polymerization. Macromolecules 1995, 28 (5), 1721-1723.
18. Lee, M.; Morigami, T.; Minoura, Y., “Living” radical polymerizations of vinyl monomers initiated by aged “Cr2++ BPO” in homogeneous solution. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 1978, 74 (0), 1738-1749.
19. Wayland, B. B.; Poszmik, G.; Mukerjee, S. L.; Fryd, M., Living Radical Polymerization of Acrylates by Organocobalt Porphyrin Complexes. Journal of the American Chemical Society 1994, 116 (17), 7943-7944.
20. Debuigne, A.; Poli, R.; De Winter, J.; Laurent, P.; Gerbaux, P.; Wathelet, J.-P.; Jérôme, C.; Detrembleur, C., Effective Cobalt-Mediated Radical Coupling (CMRC) of Poly(vinyl acetate) and Poly(N-vinylpyrrolidone) (Co)polymer Precursors. Macromolecules 2010, 43 (6), 2801-2813.
21. Nakano, T.; Yade, T.; Okamoto, Y., Revised Interpretation for N-Cyclohexylmaleimide Polymerization in the Presence of an Optically Active Cobalt(II) Complex: Polymerization Mediated by Anionic Species Formed through Monomer−Co(II) Complex−O2 Interaction. Macromolecules 2003, 36 (10), 3498-3504.
22. Wayland, B. B.; Peng, C.-H.; Fu, X.; Lu, Z.; Fryd, M., Degenerative Transfer and Reversible Termination Mechanisms for Living Radical Polymerizations Mediated by Cobalt Porphyrins. Macromolecules 2006, 39 (24), 8219-8222.
23. Chen, S.-J.; Tang, S.-C.; Zhang, P.; Chen, C.; Peng, C.-H., Aluminum Tralen Complex Meditated Reversible-Deactivation Radical Polymerization of Vinyl Acetate. ACS Macro Letters 2020, 9 (10), 1423-1428.
24. Lyaskovskyy, V.; de Bruin, B., Redox Non-Innocent Ligands: Versatile New Tools to Control Catalytic Reactions. ACS Catalysis 2012, 2 (2), 270-279.
25. Chiang, L.; Allan, L. E. N.; Alcantara, J.; Wang, M. C. P.; Storr, T.; Shaver, M. P., Tuning ligand electronics and peripheral substitution on cobalt salen complexes: structure and polymerisation activity. Dalton Transactions 2014, 43 (11), 4295-4304.
26. Mu, H.-L.; Ye, W.-P.; Song, D.-P.; Li, Y.-S., Highly Active Single-Component Neutral Nickel Ethylene Polymerization Catalysts: The Influence of Electronic Effects and Spectator Ligands. Organometallics 2010, 29 (23), 6282-6290.
27. Uegaki, H.; Kotani, Y.; Kamigaito, M.; Sawamoto, M., Nickel-Mediated Living Radical Polymerization of Methyl Methacrylate. Macromolecules 1997, 30 (8), 2249-2253.
28. Pesqueira, N. M.; Bignardi, C.; Oliveira, L. F.; Machado, A. E. H.; Carvalho-Jr, V. P.; Goi, B. E., Visible light-induced radical polymerization of vinyl acetate mediated by organo-nickel N2O2 Schiff-base complexes. Journal of Photochemistry and Photobiology A: Chemistry 2023, 437, 114443.
29. Finch, C. A., Polyvinyl alcohol; properties and applications. John Wiley & Sons: 1973.
30. Jiang, S.; Liu, S.; Feng, W., PVA hydrogel properties for biomedical application. Journal of the Mechanical Behavior of Biomedical Materials 2011, 4 (7), 1228-1233.
31. Teodorescu, M.; Bercea, M.; Morariu, S., Biomaterials of PVA and PVP in medical and pharmaceutical applications: Perspectives and challenges. Biotechnology Advances 2019, 37 (1), 109-131.
32. Ohara, T.; Sato, T.; Shimizu, N.; Prescher, G.; Schwind, H.; Weiberg, O.; Marten, K.; Greim, H., Acrylic Acid and Derivatives. In Ullmann's Encyclopedia of Industrial Chemistry, 2003.
33. Pilevar, Z.; Bahrami, A.; Beikzadeh, S.; Hosseini, H.; Jafari, S. M., Migration of styrene monomer from polystyrene packaging materials into foods: Characterization and safety evaluation. Trends in Food Science & Technology 2019, 91, 248-261.
34. Ali, U.; Karim, K. J. B. A.; Buang, N. A., A Review of the Properties and Applications of Poly (Methyl Methacrylate) (PMMA). Polymer Reviews 2015, 55 (4), 678-705.
35. Xiao, Z.; Patrick, B. O.; Dolphin, D., Ni(III) Complex of an N-Confused Porphyrin Inner C-Oxide. Inorganic Chemistry 2003, 42 (25), 8125-8127.
36. Shimazaki, Y.; Huth, S.; Karasawa, S.; Hirota, S.; Naruta, Y.; Yamauchi, O., Nickel(II)−Phenoxyl Radical Complexes: Structure−Radical Stability Relationship. Inorganic Chemistry 2004, 43 (24), 7816-7822.
37. Shimazaki, Y.; Arai, N.; Dunn, T. J.; Yajima, T.; Tani, F.; Ramogida, C. F.; Storr, T., Influence of the chelate effect on the electronic structure of one-electron oxidized group 10 metal(ii)-(disalicylidene)diamine complexes. Dalton Transactions 2011, 40 (11), 2469-2479.
38. Pratt, R. C.; Stack, T. D. P., Intramolecular Charge Transfer and Biomimetic Reaction Kinetics in Galactose Oxidase Model Complexes. Journal of the American Chemical Society 2003, 125 (29), 8716-8717.
39. Min, K. S.; Weyhermüller, T.; Bothe, E.; Wieghardt, K., Tetradentate Bis(o-iminobenzosemiquinonate(1−)) π Radical Ligands and Their o-Aminophenolate(1−) Derivatives in Complexes of Nickel(II), Palladium(II), and Copper(II). Inorganic Chemistry 2004, 43 (9), 2922-2931.
40. 周昆德. 鋅金屬錯化合物應用於可逆-去活化自由基聚合反應. 國立清華大學, 新竹市, 2021.
41. 向鈞麟. 鈣金屬錯合物應用於可逆-去活化自由基聚合反應. 國立清華大學, 新竹市, 2022.
42. Magenau, A. J. D.; Kwak, Y.; Schröder, K.; Matyjaszewski, K., Highly Active Bipyridine-Based Ligands for Atom Transfer Radical Polymerization. ACS Macro Letters 2012, 1 (4), 508-512.
43. Ando, T.; Kamigaito, M.; Sawamoto, M., Catalytic Activities of Ruthenium(II) Complexes in Transition-Metal-Mediated Living Radical Polymerization: Polymerization, Model Reaction, and Cyclic Voltammetry. Macromolecules 2000, 33 (16), 5825-5829.
44. Wang, F.-S.; Lin, S.-H.; Zheng, G.-H.; Li, M.-H.; Cheng, Y.-C.; Peng, C.-H., Coordination of Azobisisobutyronitrile with Cobalt Complexes in Cobalt-Mediated Radical Polymerization Disclosed by Linear Correlation between the Equilibrium Constant and Half-Wave Potential. Macromolecules 2022, 55 (11), 4276-4283.
45. Buchowicz, W.; Conder, J.; Hryciuk, D.; Zachara, J., Nickel-mediated polymerization of methyl methacrylate. Journal of Molecular Catalysis A: Chemical 2014, 381, 16-20.
46. Gorrell, I. B.; Looney, A.; Parkin, G.; Rheingold, A. L., [Bis(3-tert-butylpyrazolyl)hydroborato]zinc alkyl derivatives: competitive reactivity of zinc-carbon and boron-hydrogen bonds. Journal of the American Chemical Society 1990, 112 (10), 4068-4069.
47. Wilson, A. S. S.; Dinoi, C.; Hill, M. S.; Mahon, M. F.; Maron, L., Heterolysis of Dihydrogen by Nucleophilic Calcium Alkyls. Angewandte Chemie International Edition 2018, 57 (47), 15500-15504.
48. Kuntze-Fechner, M. W.; Kerpen, C.; Schmidt, D.; Häring, M.; Radius, U., NHC Nickel Catalyzed Hiyama- and Negishi-Type Cross-Coupling of Aryl Fluorides and Investigations on the Stability of Nickel(II) Fluoroaryl Alkyl Complexes. European Journal of Inorganic Chemistry 2019, 2019 (13), 1767-1775.
49. Bruyere, J.-C.; Specklin, D.; Gourlaouen, C.; Lapenta, R.; Veiros, L. F.; Grassi, A.; Milione, S.; Ruhlmann, L.; Boudon, C.; Dagorne, S., Cyclic(Alkyl)(Amino)Carbene (CAAC)-Supported Zn Alkyls: Synthesis, Structure and Reactivity in Hydrosilylation Catalysis. Chemistry – A European Journal 2019, 25 (34), 8061-8069.
50. Fischer, R.; Gärtner, M.; Görls, H.; Westerhausen, M., Synthesis and Spectroscopic Properties of Arylcalcium Halides. Organometallics 2006, 25 (14), 3496-3500.
51. Enachi, A.; Freytag, M.; Raeder, J.; Jones, P. G.; Walter, M. D., Ligand Exchange Reactions of [(tmeda)NiR2] (R = CH2CMe3, CH2SiMe3, CH2CMe2Ph) with N-Heterocyclic Carbenes and Bidentate Phosphines. Organometallics 2020, 39 (13), 2470-2478.
52. Bacsa, J.; Hanke, F.; Hindley, S.; Odedra, R.; Darling, G. R.; Jones, A. C.; Steiner, A., The Solid-State Structures of Dimethylzinc and Diethylzinc. Angewandte Chemie International Edition 2011, 50 (49), 11685-11687.
53. Cloke, F. G. N.; Hitchcock, P. B.; Lappert, M. F.; Lawless, G. A.; Royo, B., Lipophilic strontium and calcium alkyls, amides and phenoxides; X-ray structures of the crystalline square-planar [{trans-Sr(NR′2)2(µ-1,4-dioxane)}∞] and tetrahedral [CaR2(1,4-dioxane)2]; R′= SiMe3, R = CH(SiMe3)2]. Journal of the Chemical Society, Chemical Communications 1991, (10), 724-726.