簡易檢索 / 詳目顯示

研究生: 洪志豪
Hung, Chih Hao
論文名稱: 利用重組鱟血漿凝集素識別及移除細菌內毒素
Recognition and removal of bacterial endotoxin by recombinant horseshoe crab plasma lectin
指導教授: 張大慈
Chang, Dah Tsyr
口試委員: 藍忠昱
Lan, Chung Yu
蘇士哲
Sue, Shih Che
高茂傑
Kao, Mou Chieh
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子與細胞生物研究所
Institute of Molecular and Cellular Biology
論文出版年: 2016
畢業學年度: 105
語文別: 英文
論文頁數: 92
中文關鍵詞: 重組鱟血漿凝集素內毒素
外文關鍵詞: Recombinant horseshoe crab plasma lectin, Endotoxin
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 內毒素為革蘭氏陰性菌細胞膜之成分,會造成人體發炎反應,故為食品藥物管理局(Food and Drug Administration,FDA)法規要求必需於重組蛋白質製程中移除。內毒素具高熱穩定性,雖然可以高溫處理破壞,但同時會在生物藥生產過程中破壞蛋白質活性,因此,以專一性結合內毒素之樹脂去除內毒素為蛋白藥物製程中的重要步驟。由台灣三棘鱟(Taiwanese Tachypleus tridentatus)血漿中分離之血漿凝集素具有辨識革蘭氏陽性、陰性菌體以及其他病原菌表面之病原相關分子型態(Pathogen-associated molecular patterns,PAMPs)的能力。本實驗室成功以大腸桿菌系統表現與純化重組鱟血漿凝集素(recombinant horseshoe crab plasma lectin,rHPL),除具有細菌脂多醣內毒素辨識活性外,亦可專一結合細菌表面之鼠李糖(rhamnose)。本研究探討rHPL對於脂多醣的最佳結合酸鹼值和溫度,且利用還原胺化反應將rHPL固定於氧化態Sepharose CL-6B樹脂製成修飾型樹脂(rHPL-CL-6B),並驗證其成功結合綠膿桿菌之脂多醣內毒素之能力。rHPL獨特的鼠李糖及內毒素結合能力具細菌內毒素移除的潛力,此新穎內毒素識別及移除機制可貢獻於新型內毒素偵測及移除策略開發。


    Endotoxins are cell membrane components of Gram negative bacteria, which often induce human inflammatory responses. Therefore, endotoxin removal is demanded by Food and Drug Administration (FDA) during production of recombinant proteins. Since endotoxins are highly thermostable, high temperature is required to destroy them. However, high temperature also abolishes protein activity during production of gene-based products such as biologics. Accordingly, resin-based endotoxin removal strategy is commonly used to pharmaceutical proteins at laboratory scale. Recombinant horseshoe crab plasma lectin (rHPL) derived from hemolymph of Taiwanese Tachypleus tridentatus recognizes pathogen-associated molecular patterns (PAMPs) including LPSs of Gram negative bacteria as well as lipoteichoic acids (LTAs) of Gram-positive bacteria. rHPL has been successfully expressed and purified from Escherichia coli system, and it binds to L-rhamnose-containing component on bacterial surface. In this study optimal pH and temperature for LPS binding activity of rHPL are investigated and rHPL has been immobilized onto oxidized Sepharose CL-6B resin by reductive amination, leading to generation of rHPL-CL-6B resin for successful capture of LPSs of 2 Pseudomonas aeruginosa strains. rHPL possesses unique surface L-rhamnose and endotoxin binding activities. Such specific characteristics make rHPL potential for detection and removal of bacteria endotoxin. Our novel endotoxin recognition and removal mechanisms by rHPL can significantly contribute to development of novel endotoxin detection and removal strategies.

    中文摘要 I Abstract II Acknowledgement III List of Figures VII List of Tables IX List of Appendices X Abbreviation XI Chapter 1 Introduction 1 1.1 Horseshoe crab plasma lectin (HPL) 1 1.2 Rhamnose-binding lectins (RBLs) 4 1.3 Rhamnose-containing components 5 1.4 Rhamnose on P. aeruginosa 6 1.5 Lectin affinity chromatography 7 1.6 Endotoxin removal resin and endotoxin detection methods 7 1.7 Research motivation 8 Chapter 2 Materials and Methods 9 2.1 Microbial strains, media, plasmid, chemicals, resin and buffer solutions 9 2.2 Competent cell preparation 10 2.3 Mini-preparation of plasmid 10 2.4 Heat-shock transformation of E. coli 11 2.5 Small scale expression of rHPL in E. coli 11 2.6 Large scale expression and purification of rHPL in E. coli 12 2.7 Protein buffer exchange and concentration 13 2.8 Sodium dodecyl sulfate-polyacrylamide gel electrophoresis 14 2.9 Bicinchoninic acid (BCA) assay for concentration determination 14 2.10 Isolation of LPSs from P. aeruginosa PAO1 and P. aeruginosa PA14 15 2.11 Sliver staining of LPSs in polyacrylamide gels 16 2.12 Purpald assay for measurement of LPS from P. aeruginosa 17 2.13 Enzyme-linked immunosorbent assay (ELISA) for PAMP 17 2.14 Immobilization of rHPL on agarose beads 19 2.15 Adsorption of LPS from P. aeruginosa PAO1 and P. aeruginosa PA14 20 2.16 In silico prediction server 20 2.17 Cytotoxicity assay 21 Chapter 3 Results 22 3.1 Comparative analysis of rHPL and α-L-rhamnosidase 22 3.2 Comparison of amino acid sequence and structural modeling of rHPL 23 3.3 Small-scale expression of rHPL 24 3.4 Purification of rHPL 25 3.5 Sliver and Coomassie blue staining of LPS from P. aeruginosa PAO1, P. aeruginosa PA14 and P. aeruginosa sero 10 26 3.6 Comparison of LPS binding activities of rHPL to P. aeruginosa PAO1, P. aeruginosa PA14, and P. aeruginosa sero 10 26 3.7 Effect of physical conditions on LPS binding activity of rHPL 27 3.8 Stability of rHPL under different pH or temperature 28 3.9 Immobilization of rHPL on Sepharose CL-6B resin 29 3.10 Removal of LPS from P. aeruginosa PAO1 (serotype O5) and P. aeruginosa PA14 (serotype O10/O19) by rHPL- CL-6B column 30 Chapter 4 Discussion 33 4.1 Comparison of rHPL and RBLs 33 4.2 Comparison of LPS extraction by LPS extraction kit, hot phenol-water, and proteinase K 34 4.3 Comparison of silver staining for LPS from P. aeruginosa, E. coli, and S. enterica 34 4.4 Comparison of Purpald assay and Kdo method for LPS measurement 35 4.5 Correlation between rHPL and L-rhamnose in P. aeruginosa LPS 36 4.6 Modification of ELISA for measurement of binding LPS 37 4.7 Interaction between rHPL and LPS 37 4.8 Endotoxin removal using rHPL-CL-6B column 38 4.9 Conclusion 39 4.10 Prospective 40 References 41 Figure 49 Table 79 Appendix 89

    1. Chen, M., Wang, C., Wang, W., Ji, G., Hu, B., Du, M., Liu, G., Li, Z., Wang, W., Lin, X., Zheng, W., and Chen, J. (2016) De novo assembly and characterization of early embryonic transcriptome of the horseshoe crab Tachypleus tridentatus. PLoS One 11, e0145825.
    2. Ng, S. K., Huang, Y. T., Lee, Y. C., Low, E. L., Chiu, C. H., Chen, S. L., Mao, L. C., and Chang, M. D. T. (2014) A recombinant horseshoe crab plasma lectin recognizes specific pathogen-associated molecular patterns of bacteria through rhamnose. PLoS One 9, e115296.
    3. Saito, T., Kawabata, S., Hirata, M., and Iwanaga, S. (1995) A novel type of limulus lectin-L6. Purification, primary structure, and antibacterial activity. The Journal of Biological Chemistry 270, 14493-14499.
    4. Kuo, T. H., Chuang, S. C., Chang, S. Y., and Liang, P. H. (2006) Ligand specificities and structural requirements of two Tachypleus plasma lectins for bacterial trapping. Biochemical Journal 393, 757-766.
    5. Beisel, H. G., Kawabata, S., Iwanaga, S., Huber, R., and Bode, W. (1999) Tachylectin-2: crystal structure of a specific GlcNAc/GalNAc-binding lectin involved in the innate immunity host defense of the Japanese horseshoe crab Tachypleus tridentatus. The EMBO Journal 18, 2313-2322.
    6. Okino, N., Kawabata, S.-i., Saito, T., Hirata, M., Takagi, T., and Iwanaga, S. (1995) Purification, characterization, and cDNA cloning of a 27-kDa lectin (L10) from horseshoe crab hemocytes. The Journal of Biological Chemistry 270, 31008-31015.
    7. Inamori, K., Saito, T., Iwaki, D., Nagira, T., Iwanaga, S., Arisaka, F., and Kawabata, S. (1999) A newly identified horseshoe crab lectin with specificity for blood group A antigen recognizes specific O-antigens of bacterial lipopolysaccharides. The Journal of Biological Chemistry 274, 3272-3278.
    8. Saito, T., Hatada, M., Iwanaga, S., and Kawabata, S. (1997) A newly identified horseshoe crab lectin with binding specificity to O-antigen of bacterial lipopolysaccharides. The Journal of Biological Chemistry 272, 30703-30708.
    9. Gokudan, S., Muta, T., Tsuda, R., Koori, K., Kawahara, T., Seki, N., Mizunoe, Y., Wai, S. N., Iwanaga, S., and Kawabata, S. (1999) Horseshoe crab acetyl group-recognizing lectins involved in innate immunity are structurally related to fibrinogen. Proceedings of the National Academy of Sciences 96, 10086-10091.
    10. Kairies, N., Beisel, H. G., Fuentes-Prior, P., Tsuda, R., Muta, T., Iwanaga, S., Bode, W., Huber, R., and Kawabata, S. (2001) The 2.0-Å crystal structure of tachylectin 5A provides evidence for the common origin of the innate immunity and the blood coagulation systems. Proceedings of the National Academy of Sciences 98, 13519-13524.
    11. Chiou, S. T., Chen, Y. W., Chen, S. C., Chao, C. F., and Liu, T. Y. (2000) Isolation and characterization of proteins that bind to galactose, lipopolysaccharide of Escherichia coli, and protein A of Staphylococcus aureus from the hemolymph of Tachypleus tridentatus. The Journal of Biological Chemistry 275, 1630-1634.
    12. Chen, S. C., Yen, C. H., Yeh, M. S., Huang, C. J., and Liu, T. Y. (2001) Biochemical properties and cDNA cloning of two new lectins from the plasma of Tachypleus tridentatus: Tachypleus plasma lectin 1 and 2+. The Journal of Biological Chemistry 276, 9631-9639.
    13. Chen, Y. E. (2015) In silico identification and in vitro characterization of bacteria/ligand binding residues governing antibacterial function of recombinant horseshoe crab plasma lectin (MS thesis). National Tsing Hua University, Hsinchu, Taiwan.
    14. Herczeg, M., Mezo, E., Molnar, N., Ng, S. K., Lee, Y. C., Chang, M. D. T., and Borbas, A. (2016) Inhibitory effect of multivalent rhamnobiosides on recombinant horseshoe crab plasma lectin interactions with Pseudomonas aeruginosa PAO1. Chemistry - An Asian Journal 11, 3398-3413.
    15. Wagner, J. M., Chan, S., Evans, T. J., Kahng, S., Kim, J., Arbing, M. A., Eisenberg, D., and Korotkov, K. V. (2016) Structures of EccB1 and EccD1 from the core complex of the mycobacterial ESX-1 type VII secretion system. BMC Structural Biology 16, 5.
    16. Zhang, X. L., Li, D. F., Fleming, J., Wang, L. W., Zhou, Y., Wang, D. C., Zhang, X. E., and Bi, L. J. (2015) Core component EccB1 of the Mycobacterium tuberculosis type VII secretion system is a periplasmic ATPase. The FASEB Journal 29, 4804-4814.
    17. Ogawa, T., Watanabe, M., Naganuma, T., and Muramoto, K. (2011) Diversified carbohydrate-binding lectins from marine resources. Journal of Amino Acids 2011, 838914.
    18. Carneiro, R. F., Teixeira, C. S., de Melo, A. A., de Almeida, A. S., Cavada, B. S., de Sousa, O. V., da Rocha, B. A., Nagano, C. S., and Sampaio, A. H. (2015) L-Rhamnose-binding lectin from eggs of the Echinometra lucunter: amino acid sequence and molecular modeling. International Journal of Biological Macromolecules 78, 180-188.
    19. Nitta, K., Kawano, T., Sugawara, S., and Hosono, M. (2007) Regulation of globotriaosylceramide (Gb3)-mediated signal transduction by rhamnose-binding lectin. Journal of the Pharmaceutical Society of Japan 127, 553-561.
    20. Hosono, M., Ishikawa, K., Mineki, R., Murayama, K., Numata, C., Ogawa, Y., Takayanagi, Y., and Nitta, K. (1999) Tandem repeat structure of rhamnose-binding lectin from catfish (Silurus asotus) eggs. Biochimica et Biophysica Acta 1472, 668-675.
    21. Murayama, K., Taka, H., Kaga, N., Fujimura, T., Mineki, R., Shindo, N., Morita, M., Hosono, M., and Nitta, K. (1997) The structure of Silurus asotus (catfish) roe lectin (SAL): identification of a noncovalent trimer by mass spectrometry and analytical ultracentrifugation. Analytical Biochemistry 247, 319-326.
    22. Tateno, H., Ogawa, T., Muramoto, K., Kamiya, H., and Saneyoshi, M. (2002) Distribution and molecular evolution of rhamnose-binding lectins in Salmonidae: isolation and characterization of two lectins from white-spotted Charr (Salvelinus leucomaenis) eggs. Bioscience, Biotechnology, and Biochemistry 66, 1356-1365.
    23. Tateno, H., Saneyoshi, A., Ogawa, T., Muramoto, K., Kamiya, H., and Saneyoshi, M. (1998) Isolation and characterization of rhamnose-binding lectins from eggs of steelhead trout (Oncorhynchus mykiss) homologous to low density lipoprotein receptor superfamily. The Journal of Biological Chemistry 273, 19190-19197.
    24. Shiina, N., Tateno, H., Ogawa, T., Muramoto, K., Saneyoshi, M., and Kamiya, H. (2002) Isolation and characterization of L-rhamnose-binding lectins from chum salmon (Oncorhynchus keta) eggs. Fisheries Science 68, 1352-1366.
    25. Tateno, H., Ogawa, T., Muramoto, K., Kamiya, H., Hirai, T., and Saneyoshi, M. (2001) A novel rhamnose-binding lectin family from eggs of steelhead trout (Oncorhynchus mykiss) with different structures and tissue distribution. Bioscience, Biotechnology, and Biochemistry 65, 1328-1338.
    26. Tateno, H., Ogawa, T., Muramoto, K., Kamiya, H., and Saneyoshi, M. (2002) Rhamnose-binding lectins from steelhead trout (Oncorhynchus mykiss) eggs recognize bacterial lipopolysaccharides and lipoteichoic acid. Bioscience, Biotechnology, and Biochemistry 66, 604-612.
    27. Ozeki, Y., Matsui, T., Suzuki, M., and Titani, K. (1991) Amino acid sequence and molecular characterization of a D-galactoside-specific lectin purified from sea urchin (Anthocidaris crassispina) eggs. Biochemistry 30, 2391-2394.
    28. Fang, J., Qin, G., Ma, J., and She, Y. M. (2015) Quantification of plant cell wall monosaccharides by reversed-phase liquid chromatography with 2-aminobenzamide pre-column derivatization and a non-toxic reducing reagent 2-picoline borane. Journal of Chromatography A 1414, 122-128.
    29. Wu, M., Zhang, F., Yu, Z., Lin, J., and Yang, L. (2015) Chemical characterization and in vitro antitumor activity of a single-component polysaccharide from Taxus chinensis var. mairei. Carbohydrate Polymers 133, 294-301.
    30. Zhang, W., Song, D., Xu, D., Wang, T., Chen, L., and Duan, J. (2015) Characterization of polysaccharides with antioxidant and immunological activities from Rhizoma Acori Tatarinowii. Carbohydrate Polymers 133, 154-162.
    31. Synytsya, A., Choi, D. J., Pohl, R., Na, Y. S., Capek, P., Lattova, E., Taubner, T., Choi, J. W., Lee, C. W., Park, J. K., Kim, W. J., Kim, S. M., Lee, J., and Park, Y. I. (2015) Structural features and anti-coagulant activity of the sulphated polysaccharide SPS-CF from a green alga Capsosiphon fulvescens. Marine Biotechnology 17, 718-735.
    32. Bystrova, O. V., Lindner, B., Moll, H., Kocharova, N. A., Knirel, Y. A., Zahringer, U., and Pier, G. B. (2004) Full structure of the lipopolysaccharide of Pseudomonas aeruginosa immunotype 5. Biochemistry 69, 170-175.
    33. Pazur, J. H., Erikson, M. S., Tay, M. E., and Allen, P. Z. (1983) Isomeric, anti-rhamnose antibodies having specificity for rhamnose-containing, streptococcal heteroglycans. Carbohydrate Research 124, 253-263.
    34. Knirel, Y. A., Bystrova, O. V., Kocharova, N. A., Zahringer, U., and Pier, G. B. (2006) Conserved and variable structural features in the lipopolysaccharide of Pseudomonas aeruginosa. Journal of Endotoxin Research 12, 324-336.
    35. Low, E. L. (2010) Characterization of bacteria and ligand binding activities of recombinant Tachypleus plasma lectin 2 (MS thesis). National Tsing Hua University, Hsinchu, Taiwan.
    36. Mikkelsen, H., McMullan, R., and Filloux, A. (2011) The Pseudomonas aeruginosa reference strain PA14 displays increased virulence due to a mutation in ladS. PLoS One 6, e29113.
    37. Hao, Y., Murphy, K., Lo, R. Y., Khursigara, C. M., and Lam, J. S. (2015) Single-nucleotide polymorphisms found in the migA and wbpX glycosyltransferase genes account for the intrinsic lipopolysaccharide defects exhibited by Pseudomonas aeruginosa PA14. Journal of Bacteriology 197, 2780-2791.
    38. Pier, G. B. (2007) Pseudomonas aeruginosa lipopolysaccharide: a major virulence factor, initiator of inflammation and target for effective immunity. International Journal of Medical Microbiology 297, 277-295.
    39. Lam, J. S., Taylor, V. L., Islam, S. T., Hao, Y., and Kocincova, D. (2011) Genetic and functional diversity of Pseudomonas aeruginosa lipopolysaccharide. Frontiers in Microbiology 2, 118.
    40. Kohler, T., Donner, V., and van Delden, C. (2010) Lipopolysaccharide as shield and receptor for R-pyocin-mediated killing in Pseudomonas aeruginosa. Journal of Bacteriology 192, 1921-1928.
    41. Tan, M. W., Mahajan-Miklos, S., and Ausubel, F. M. (1999) Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proceedings of the National Academy of Sciences 96, 715-720.
    42. Hirabayashi, J., Tateno, H., Shikanai, T., Aoki-Kinoshita, K. F., and Narimatsu, H. (2015) The lectin frontier database (LfDB), and data generation based on frontal affinity chromatography. Molecules (Basel, Switzerland) 20, 951-973.
    43. Hage, D. S., Anguizola, J. A., Bi, C., Li, R., Matsuda, R., Papastavros, E., Pfaunmiller, E., Vargas, J., and Zheng, X. (2012) Pharmaceutical and biomedical applications of affinity chromatography: recent trends and developments. Journal of Pharmaceutical and Biomedical Analysis 69, 93-105.
    44. Baintner, K., Kocsis, B., Kovacs, K., Peterfi, Z., Kokeny, G., and Hamar, P. (2011) Interaction of concanavalin a with bacterial lipopolysaccharides in agarose gel. Acta Microbiologica et Immunologica Hungarica 58, 201-209.
    45. Ozaki, Y., Iwata, J., and Ohashi, T. (1984) Mechanism of neutrophil chemiluminescence induced by wheat germ agglutinin: partial characterization of the antigens recognized by wheat germ agglutinin. Blood 64, 1094-1102.
    46. Peumans, W. J., Hause, B., and Van Damme, E. J. (2000) The galactose-binding and mannose-binding jacalin-related lectins are located in different sub-cellular compartments. FEBS Letters 477, 186-192.
    47. Chen, G. Y., Chen, C. Y., Chang, M. D., Matsuura, Y., and Hu, Y. C. (2009) Concanavalin A affinity chromatography for efficient baculovirus purification. Biotechnology Progress 25, 1669-1677.
    48. Ohlson, S., Bergstrom, M., Leickt, L., and Zopf, D. (1998) Weak affinity chromatography of small saccharides with immobilised wheat germ agglutinin and its application to monitoring of carbohydrate transferase activity. Bioseparation 7, 101-105.
    49. Hortin, G. L., and Trimpe, B. L. (1990) Lectin affinity chromatography of proteins bearing O-linked oligosaccharides: application of jacalin-agarose. Analytical Biochemistry 188, 271-277.
    50. Magalhaes, P. O., Lopes, A. M., Mazzola, P. G., Rangel-Yagui, C., Penna, T. C., and Pessoa, A., Jr. (2007) Methods of endotoxin removal from biological preparations: a review. Journal of Pharmaceutical Sciences 10, 388-404.
    51. Su, W., and Ding, X. (2015) Methods of endotoxin detection. Journal of Laboratory Automation 20, 354-364.
    52. Tsai, C. M., and Frasch, C. E. (1982) A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Analytical Biochemistry 119, 115-119.
    53. Lee, C. H., and Tsai, C. M. (1999) Quantification of bacterial lipopolysaccharides by the purpald assay: measuring formaldehyde generated from 2-keto-3-deoxyoctonate and heptose at the inner core by periodate oxidation. Analytical Biochemistry 267, 161-168.
    54. Stults, N. L., Asta, L. M., and Lee, Y. C. (1989) Immobilization of proteins on oxidized crosslinked Sepharose preparations by reductive amination. Analytical Biochemistry 180, 114-119.
    55. Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Soding, J., Thompson, J. D., and Higgins, D. G. (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology 7, 539.
    56. Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., and Sternberg, M. J. (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols 10, 845-858.
    57. Yadav, V., Yadav, P. K., Yadav, S., and Yadav, K. D. S. (2010) α-L-Rhamnosidase: a review. Process Biochemistry 45, 1226-1235.
    58. Ichinose, H., Fujimoto, Z., and Kaneko, S. (2013) Characterization of an alpha-L-rhamnosidase from Streptomyces avermitilis. Bioscience, Biotechnology, and Biochemistry 77, 213-216.
    59. Fujimoto, Z., Jackson, A., Michikawa, M., Maehara, T., Momma, M., Henrissat, B., Gilbert, H. J., and Kaneko, S. (2013) The structure of a Streptomyces avermitilis alpha-L-rhamnosidase reveals a novel carbohydrate-binding module CBM67 within the six-domain arrangement. The Journal of Biological Chemistry 288, 12376-12385.
    60. Shirai, T., Watanabe, Y., Lee, M. S., Ogawa, T., and Muramoto, K. (2009) Structure of rhamnose-binding lectin CSL3: unique pseudo-tetrameric architecture of a pattern recognition protein. Journal of Molecular Biology 391, 390-403.
    61. Tsai, C. M., and Frasch, C. E. (1982) A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Analytical Biochemistry 119, 115-119.
    62. Kropinski, A. M., Berry, D., and Greenberg, E. P. (1986) The basis of silver staining of bacterial lipopolysaccharides in polyacrylamide gels. Current Microbiology 13, 29-31.
    63. Rezania, S., Amirmozaffari, N., Tabarraei, B., Jeddi-Tehrani, M., Zarei, O., Alizadeh, R., Masjedian, F., and Zarnani, A. H. (2011) Extraction, purification and characterization of lipopolysaccharide from Escherichia coli and Salmonella Typhi. Avicenna Journal of Medical Biotechnology 3, 3-9.
    64. Hitchcock, P. J., and Brown, T. M. (1983) Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. Journal of Bacteriology 154, 269-277.
    65. Chevallet, M., Luche, S., and Rabilloud, T. (2006) Silver staining of proteins in polyacrylamide gels. Nature Protocols 1, 1852-1858.
    66. Dion, A. S., and Pomenti, A. A. (1983) Ammoniacal silver staining of proteins: mechanism of glutaraldehyde enhancement. Analytical Biochemistry 129, 490-496.
    67. Oakley, B. R., Kirsch, D. R., and Morris, N. R. (1980) A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Analytical Biochemistry 105, 361-363.
    68. Munford, R. S., Hall, C. L., and Rick, P. D. (1980) Size heterogeneity of Salmonella Typhimurium lipopolysaccharides in outer membranes and culture supernatant membrane fragments. Journal of Bacteriology 144, 630-640.
    69. Liu, P. V., and Wang, S. (1990) Three new major somatic antigens of Pseudomonas aeruginosa. Journal of Clinical Microbiology 28, 922-925.
    70. Beamer, L. J., Carroll, S. F., and Eisenberg, D. (1998) The BPI/LBP family of proteins: a structural analysis of conserved regions. Protein Science 7, 906-914.
    71. de Haas, C. J., Haas, P. J., van Kessel, K. P., and van Strijp, J. A. (1998) Affinities of different proteins and peptides for lipopolysaccharide as determined by biosensor technology. Biochemical and Biophysical Research Communications 252, 492-496.
    72. Morrison, D. C., Lei, M. G., Kirikae, T., and Chen, T. Y. (1993) Endotoxin receptors on mammalian cells. Immunobiology 187, 212-226.
    73. Ohno, N., and Morrison, D. C. (1989) Lipopolysaccharide interaction with lysozyme. Binding of lipopolysaccharide to lysozyme and inhibition of lysozyme enzymatic activity. The Journal of Biological Chemistry 264, 4434-4441.
    74. Elass-Rochard, E., Roseanu, A., Legrand, D., Trif, M., Salmon, V., Motas, C., Montreuil, J., and Spik, G. (1995) Lactoferrin-lipopolysaccharide interaction: involvement of the 28-34 loop region of human lactoferrin in the high-affinity binding to Escherichia coli 055B5 lipopolysaccharide. Biochemical Journal 312 ( Pt 3), 839-845.
    75. Berger, D., Schleich, S., Seidelmann, M., and Beger, H. G. (1991) Demonstration of an interaction between transferrin and lipopolysaccharide--an in vitro study. European Surgical Research 23, 309-316.
    76. Kaca, W., Roth, R. I., and Levin, J. (1994) Hemoglobin, a newly recognized lipopolysaccharide (LPS)-binding protein that enhances LPS biological activity. The Journal of Biological Chemistry 269, 25078-25084.
    77. Ongkudon, C. M., Chew, J. H., Liu, B., and Danquah, M. K. (2012) Chromatographic removal of endotoxins: a bioprocess engineer's perspective. ISRN Chromatography 2012, 9.
    78. Gorbet, M. B., and Sefton, M. V. (2005) Endotoxin: the uninvited guest. Biomaterials 26, 6811-6817.
    79. Petsch, D., and Anspach, F. B. (2000) Endotoxin removal from protein solutions. Journal of Biotechnology 76, 97-119.
    80. Chou, W. Y., Pai, T. W., Jiang, T. Y., Chou, W. I., Tang, C. Y., and Chang, M. D. T. (2011) Hydrophilic aromatic residue and in silico structure for carbohydrate binding module. PLoS One 6, e24814.
    81. Branston, S. D., Wright, J., and Keshavarz-Moore, E. (2015) A non-chromatographic method for the removal of endotoxins from bacteriophages. Biotechnology and Bioengineering 112, 1714-1719.
    82. Szermer-Olearnik, B., and Boratynski, J. (2015) Removal of endotoxins from bacteriophage preparations by extraction with organic solvents. PLoS One 10, e0122672.
    83. Perdomo, R., and Montero, V. (2006) Purification of E.coli 055: B5 lipopolysaccharides by size exclusion chromatography. Biotecnología Aplicada 23, 124-129.
    84. Buchanan, P. J., Ernst, R. K., Elborn, J. S., and Schock, B. (2009) Role of CFTR, Pseudomonas aeruginosa and Toll-like receptors in cystic fibrosis lung inflammation. Biochemical Society Transactions 37, 863-867.
    85. Fu, J. H. (2015) In silico structure prediction and functional characterization of recombinant Tachypleus plasma lectin 1 (MS thesis). National Tsing Hua University, Hsinchu, Taiwan.
    86. Sasaki, H., and Aketa, K. (1981) Purification and distribution of a lectin in sea urchin (Anthocidaris crassispina) egg before and after fertilization. Experimental Cell Research 135, 15-19.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE