研究生: |
張文瑜 Wen-Yu Chang |
---|---|
論文名稱: |
生醫細胞晶片:以介電泳細胞操控及微系統整合實現單一細胞胞膜電穿孔改質應用 A Biochip via Dielectrophoresis Manipulation and Microsystem Techniques for Single Cell Electroporation |
指導教授: |
劉承賢
Cheng-Hsien Liu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 53 |
中文關鍵詞: | 介電泳 、胞膜電穿孔 、細胞 、生醫晶片 |
外文關鍵詞: | dielectrophoresis, electroporation, cell, biochip |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在過去的十幾年中,利用微機電裝置對生物分子,如細胞、DNA、蛋白質等進行操控與分析已成為目前生物技術發展上的重要分支之一。由於尺寸上的匹配,許多技術在光學、機械、電學及其他領域上對於生物的應用,都已發展出各種不同的方法。從最基本的操控,如細胞的傳輸和分類,到更進一步的療法,如細胞分解、培養和胞膜電穿孔等,都已被廣泛的開發出來。現今,隨著技術和各類微機電基礎元件發展設計上的日趨成熟,在系統整合這一方面的研究,儼然成為目前的研究趨勢。
在本篇論文中,我們提出一個利用介電泳原理設計的細胞操控暨胞膜電穿孔的微晶片系統。它整合了以介電泳電極設計的細胞的排列、分配、固定等功能,並以單一細胞的基因穿透為設計目標。其中以模擬軟體CFDRC的數值模擬與分析來評估並最佳化設計參數,並在驗證設計概念後,以微機電製程將晶片以兩道光罩的製程加以實現。實驗結果利用HEK 293細胞配合導電度為9.2μS/cm-1的介電泳操控溶液,調整施加電壓在4Vpp至6Vpp 的條件下,成功實現了利用介電泳原理的細胞操控技術,並以染劑YOYO-1驗證胞膜電穿孔之基因轉殖功能。據筆者所知,本論文的研究,成功的整合微系統技術與生醫技術發展相當前瞻性的單一細胞電穿孔晶片。
Manipulation and analysis of biological molecules, such as cells, DNA and proteins via using MEMS devices has become an important branch of biotechnology during the past decades. Owning to the dimension match with the cells of μm in size, numerous techniques in optical, mechanical, electrical and other fields have developed various methods for biological applications. From fundamental manipulations, like cell transportation and separation to further cell treatments, like cell lysis, culture and electroporation, the biotechnology research has been driven forwards where people never thought about the two decades ago. With the mature in biotechnology and MEMS technology, the system integration will become a popular trend nowadays.
In this thesis, a cell-on-chip microsystem via the design of enhanced dielectrophresis for single cell electroporation is proposed. It integrated with the functions of cell alignment by the bow-tied shaped DEP electrodes, cell sorting by the six-array DEP electrodes and cell immobilization by quadruple DEP electrodes for the purpose of gene delivery. Numerical simulations by using the software CFDRC are carried out for the purpose of Lab chip design and evaluate the electric field distribution for the optimization of our device design. Through the simulations and analyses, our design concept is proofed, and the chip is realized via the MEMS micromachining process. The bio-experimental results of dielectrophoretic manipulations and single cell electroporation are successfully demonstrated by using HEK 293 cells in the experimental buffer (8.5% sucrose and 0.3% D-glucose, anhydrous in ddH2O, conductivity of 9.2μS/cm-1). The applied electrical potential varies from 4Vpp to 6Vpp for the DEP cell manipulation. The phenomenon of electroporation under an applied electrical potential is successfully demonstrated by YOYO-1 fluorescent dye under laser excitation. Based on our knowledge, this research demonstrated the pioneer of single-cell electroporation via microsystem integration.
[1] A. Ashkin and J. M. Dziedzic, “Optical Trapping and Manipulation of Viruses and Bacteria," Science, 235, 1517-1520, Mar. (1987).
[2] P.Y. Chiou, A.T. Ohta, M.C. Wu, Nature 436 (2005) 370.
[3] L. Zhu, Q. Zhang, H.H. Feng, S. Ang, F.S. Chau, W.T. Liu, Lab Chip 4 (2004) 337.
[4] H. Mohamed, L.D. McCurdy, D.H. Szarowski, S. Duva, J.N. Turner, M. Caggana, IEEE Trans. Nanobiosci. 3 (2004) 251.
[5] J. Moorthy, D.J. Beebe, Lab Chip 3 (2003) 62.
[6] L.R. Huang, E.C. Cox, R.H. Austin, J.C. Sturm, Science 304 (2004) 987.
[7] A. Khademhosseini, J. Yeh, S. Jon, G. Eng, K.Y. Suh, J.A. Burdick, R. Langer, Lab Chip 4 (2004) 425.
[8] H. Tani, K. Maehana, T. Kamidate, Anal. Chem. 76 (2004) 6693.
[9] A. Revzin, R.G. Tompkins, M. Toner, Langmuir 19 (2003) 9855.
[10] N. Chronis, L.P. Lee, J. Microelectromech. S 14 (2005) 857.
[11] J. Lahann, M. Balcells, H. Lu, T. Rodon, K.F. Jensen, R. Lange, Anal. Chem. 75 (2003) 2117.
[12] B.J. Kirby, A.R. Wheeler, R.N. Zare, J.A. Fruetel, T.J. Shepodd, Lab Chip 3 (2003) 5.
[13] J.D. Cox, M.S. Curry, S.K. Skirboll, P.L. Gourley, D.Y. Sasaki, Biomaterials 23 (2002) 929.
[14] C. J. Kim, A. P. Pisano, R. S. Muller, M. G. Lim, “Polysilicon Microgripper,” Tech. Dig., IEEE Solid-State Sensor and Actuator Workshop, 48-51, Jun. (1990).
[15] C. J. Kim, A. P. Pisano, R. S. Muller, M. G. Lim, “Silicon-Processed Overhanging Microgripper,” J. MEMS, 1(3), 31-36, Mar. (1992).
[16] K.H. Han, A.B. Frazier, J. Appl. Phys. 96 (2004) 5797.
[17] M.P. Hughes, and H. Morgan, “Dielectrophoretic Trapping of Single Sub-micrometre Scale Bioparticles,” Journal of Physics D: Applied Physics 31 2205-2210, (1998).
[18] T. Schnelle, T. Müller, and G. Fuhr, “Trapping in AC Cctode Field Cages,” Journal of Electrostatics 50, 17-29, (2000).
[19] J. Voldman, M. Toner, M.L. Gray, and M.A. Schmidt, “Design and Analysis of Extruded Quadrupolar Dielectrophoretic Traps,” Journal of Electrostatics 57, 69-90, (2003).
[20] E. Neumann, M. Schaefer-Ridder, Y. Wang and P. H. Hofschneider, “Gene Transfer into Mouse Lyoma Cells by Electroporation in High Electric Fields,” EMBO J., 1, 841–845, (1982).
[21] C. P. Jen, W.M. Wu, M. Li, and Y.C. Lin, “Site-Specific Enhancement of Gene Transfection Utilizing an Attracting Electric Field for DNA Plasmids on the Electroporation Microchip,” Journal of Microelectromechanical System, 13(6), Dec, (2004).
[22] J.A. Lundqvist, F. Sahlin, M.A.Aberg, A. Strimberg, P.S. Eriksson, O. Orwar. “Altering the biochemical state of individual cultured cells and organelles with ultramicroelectrodes,” Proc Natl Acad Sci, 95, 10356-10360, (1998).
[23] Y. Huang and B. Rubinsky, “Microfabricated electroporation Chip for Single Cell Membrane Permeabilization,” Sens. Actuators: Phys. 89, 242–249, (2001).
[24] Y. Huanga and B. Rubinskyb “Flow-through Micro-electroporation Chip for High Efficiency Single-cell Genetic Manipulation,” Sensors and Actuators A, 104, 205–212, (2003).
[25] M. Khine, A. Lau, C. Ionescu-Zanetti, J. Seo and Luke P. Lee, “A Single Cell Electroporation Chip,” Lab Chip, 5, 38–43, (2005).
[26] C.H. Kua, Y.C. Lam, C. Yang and K. Youcef-Toumi “Review of Bio-particle Manipulation Using Dielectrophoresis,” Innovation in Manufacturing Systems and Technology (IMST), Jan (2005).
[27] R. Pethig and G. H. Markx, “Applications of Dielectrophoresis in Biotechnology,” Trends Biotechnol., 15, 426–432, (1997).
[28] James C. Weaver, “Electroporation of Cells and Tissues,” IEEE TRANSACTIONS ON PLASMA SCIENCE, 28(1), Feb (2000).
[29] Sukhendu B. Dev, Dietmar P. Rabussay, Georg Widera, and Gunter A. Hofmann, Senior Member, IEEE, “Medical Applications of Electroporation,” IEEE TRANSACTIONS ON PLASMA SCIENCE, 28(1), Feb. (2000).