研究生: |
周聖平 Chou, Sheng-Ping |
---|---|
論文名稱: |
通過全基因組RNA序列的系統生物學方法研究致病機制以識別生物標誌物並建構基於深度神經網絡的DTI模型預測潛在的治療異位性皮膚炎的分子藥物 Systems biology methods via genome-wide RNA sequences to investigate pathogenic mechanism for identifying biomarkers and constructing a DNN-based DTI model to predict potential molecular drugs for treating atopic dermatitis |
指導教授: |
陳博現
Chen, Bor-Sen |
口試委員: |
李征衞
Li, Cheng-Wei 莊永仁 Chuang, Yung-Jen |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2024 |
畢業學年度: | 113 |
語文別: | 英文 |
論文頁數: | 42 |
中文關鍵詞: | 異位性皮膚炎 、系統生物學 、赤池資訊準則(AIC) 、基於DNN的DTI模型 、遺傳與表觀遺傳網路 、生物標記物 、藥物設計規範 |
外文關鍵詞: | atopic dermatitis, systems biology, Akaike information criterion, DNN based-DTI model, genome-wide genetic and epigenetic network, biomarker, drug design specification |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在通過系統生物學和參數估計方法,結合大數據挖掘和全基因組微陣列數據,來估算蛋白質-蛋白質相互作用網路(PPIN)和基因調控網路(GRN),以構建異位性皮膚炎(AD)和健康對照組的全基因組遺傳與表觀遺傳網路(GWGEN)。隨後,利用主網路投影(PNP)方法從實際的GWGEN中提取AD和健康對照組的核心GWGEN,並進行京都基因與基因組百科全書(KEGG)通路註釋。接著,我們比較AD和健康對照組核心信號通路之間的異常信號通路,探討AD的發病機制。然後,我們從異常核心信號通路中選取了作為AD治療靶點的生物標誌物,如IL-1β、GATA3、Akt和NF-κB,這些標誌物在對下游基因的異常調控中起著重要作用,導致AD患者的細胞功能失調。接下來,我們使用藥物-靶點相互作用(DTI)數據庫對基於深度神經網路(DNN)的DTI模型進行預訓練,以預測這些生物標誌物的互動分子藥物。因此,我們獲得了可能與藥物標靶相互作用的候選分子藥物。最後,根據藥物毒性、敏感性和調控能力等藥物設計規範,篩選出潛在的分子藥物作為治療這些生物標誌物的選項,包括二甲雙胍、尿囊素和U-0126,這些藥物在調節異常免疫反應和恢復AD病理信號通路方面顯示出潛在的治療效果。
This study aimed to estimate the protein-protein interaction network (PPIN) and gene regulatory network (GRN) to construct real genome-wide genetic and epigenetic network (GWGEN) of Atopic dermatitis (AD) and healthy controls through systems biology and parameter estimation method by big data mining and their genome-wide microarray data. Subsequently, core GWGENs of AD and healthy control are extracted from their real GWGENs by principal network projection (PNP) method for Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation. Then, we compare the abnormal signaling pathways between core signaling pathways of AD and healthy control to investigate pathogenesis of AD. Then, we selected biomarkers of AD as drug targets for treating AD from the abnormal core signaling pathways, such as IL-1β, GATA3, Akt, and NF-κB, which play important roles in the abnormal regulations on the downstream genes, leading to cellular dysfunctions in AD patients. Next, a deep neural network (DNN)-based drug-target interaction (DTI) model is pre-trained by Drug-Target Interaction (DTI) databases to predict the interactive molecular drugs for these biomarkers. Consequently, we obtained a list of candidate molecular drugs, which could to interact with the target molecules. Finally, we screened the candidate molecular drugs based on drug toxicity, sensitivity, and regulatory ability as drug design specifications to select potential molecular drugs for these biomarkers to treat AD, including metformin, allantoin, and U-0126, which have showed potential therapeutic treatment on regulating abnormal immune responses and restoring pathogenic signaling pathways of AD.
1. Urban, K., et al., The global, regional, and national burden of atopic dermatitis in 195 countries and territories: An ecological study from the Global Burden of Disease Study 2017. JAAD Int, 2021. 2: p. 12-18.
2. Talamonti, M., et al., Quality of Life and Psychological Impact in Patients with Atopic Dermatitis. J Clin Med, 2021. 10(6).
3. Ronnstad, A.T.M., et al., Association of atopic dermatitis with depression, anxiety, and suicidal ideation in children and adults: A systematic review and meta-analysis. J Am Acad Dermatol, 2018. 79(3): p. 448-456 e30.
4. Barnes, K.C., An update on the genetics of atopic dermatitis: scratching the surface in 2009. J Allergy Clin Immunol, 2010. 125(1): p. 16-29 e1-11; quiz 30-1.
5. Kim, J., B.E. Kim, and D.Y.M. Leung, Pathophysiology of atopic dermatitis: Clinical implications. Allergy Asthma Proc, 2019. 40(2): p. 84-92.
6. Fadadu, R.P., et al., Air Pollution and Atopic Dermatitis, from Molecular Mechanisms to Population-Level Evidence: A Review. Int J Environ Res Public Health, 2023. 20(3).
7. Frazier, W. and N. Bhardwaj, Atopic Dermatitis: Diagnosis and Treatment. Am Fam Physician, 2020. 101(10): p. 590-598.
8. Simpson, E.L., et al., When does atopic dermatitis warrant systemic therapy? Recommendations from an expert panel of the International Eczema Council. J Am Acad Dermatol, 2017. 77(4): p. 623-633.
9. Singh, T.U., et al., Drug repurposing approach to fight COVID-19. Pharmacol Rep, 2020. 72(6): p. 1479-1508.
10. Yeh, S.J., B.J. Hsu, and B.S. Chen, Systems Medicine Design for Triple-Negative Breast Cancer and Non-Triple-Negative Breast Cancer Based on Systems Identification and Carcinogenic Mechanisms. Int J Mol Sci, 2021. 22(6).
11. Liu, C., et al., Act1, a U-box E3 ubiquitin ligase for IL-17 signaling. Sci Signal, 2009. 2(92): p. ra63.
12. Zhang, J., et al., An unexpected twist to the activation of IKKbeta: TAK1 primes IKKbeta for activation by autophosphorylation. Biochem J, 2014. 461(3): p. 531-7.
13. Kishida, S., et al., TAK1-binding protein 2 facilitates ubiquitination of TRAF6 and assembly of TRAF6 with IKK in the IL-1 signaling pathway. Genes Cells, 2005. 10(5): p. 447-54.
14. Liu, T., et al., NF-kappaB signaling in inflammation. Signal Transduct Target Ther, 2017. 2: p. 17023-.
15. Fania, L., et al., Multiple Roles for Cytokines in Atopic Dermatitis: From Pathogenic Mediators to Endotype-Specific Biomarkers to Therapeutic Targets. Int J Mol Sci, 2022. 23(5).
16. Bradley, J.R., TNF-mediated inflammatory disease. J Pathol, 2008. 214(2): p. 149-60.
17. Sanmiguel, J.C., et al., Interleukin-1 regulates keratinocyte expression of T cell targeting chemokines through interleukin-1 receptor associated kinase-1 (IRAK1) dependent and independent pathways. Cell Signal, 2009. 21(5): p. 685-94.
18. Sawant, K.V., et al., Neutrophil recruitment by chemokines Cxcl1/KC and Cxcl2/MIP2: Role of Cxcr2 activation and glycosaminoglycan interactions. J Leukoc Biol, 2021. 109(4): p. 777-791.
19. Motshwene, P.G., et al., An oligomeric signaling platform formed by the Toll-like receptor signal transducers MyD88 and IRAK-4. J Biol Chem, 2009. 284(37): p. 25404-11.
20. Muroi, M. and K. Tanamoto, IRAK-1-mediated negative regulation of Toll-like receptor signaling through proteasome-dependent downregulation of TRAF6. Biochim Biophys Acta, 2012. 1823(2): p. 255-63.
21. Buerger, C., et al., Interleukin-1beta interferes with epidermal homeostasis through induction of insulin resistance: implications for psoriasis pathogenesis. J Invest Dermatol, 2012. 132(9): p. 2206-14.
22. Wu, J., et al., A p38alpha-BLIMP1 signalling pathway is essential for plasma cell differentiation. Nat Commun, 2022. 13(1): p. 7321.
23. Yang, X.O., et al., T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity, 2008. 28(1): p. 29-39.
24. Sonkoly, E., et al., MicroRNAs: novel regulators involved in the pathogenesis of psoriasis? PLoS One, 2007. 2(7): p. e610.
25. Chen, Z., et al., Selective regulatory function of Socs3 in the formation of IL-17-secreting T cells. Proc Natl Acad Sci U S A, 2006. 103(21): p. 8137-42.
26. Jiang, H., M.B. Harris, and P. Rothman, IL-4/IL-13 signaling beyond JAK/STAT. J Allergy Clin Immunol, 2000. 105(6 Pt 1): p. 1063-70.
27. Onodera, A., et al., STAT6-mediated displacement of polycomb by trithorax complex establishes long-term maintenance of GATA3 expression in T helper type 2 cells. J Exp Med, 2010. 207(11): p. 2493-506.
28. Zhu, J., et al., GATA-3 promotes Th2 responses through three different mechanisms: induction of Th2 cytokine production, selective growth of Th2 cells and inhibition of Th1 cell-specific factors. Cell Res, 2006. 16(1): p. 3-10.
29. Schwenger, G.T., et al., GATA-3 has dual regulatory functions in human interleukin-5 transcription. J Biol Chem, 2001. 276(51): p. 48502-9.
30. Yanagihara, Y., et al., Functional significance of IL-4 receptor on B cells in IL-4-induced human IgE production. J Allergy Clin Immunol, 1995. 96(6 Pt 2): p. 1145-51.
31. Pelaia, C., et al., Interleukin-5 in the Pathophysiology of Severe Asthma. Front Physiol, 2019. 10: p. 1514.
32. Melo, R.C.N. and P.F. Weller, Contemporary understanding of the secretory granules in human eosinophils. J Leukoc Biol, 2018. 104(1): p. 85-93.
33. Parmar, N. and F. Tamanoi, Rheb G-Proteins and the Activation of mTORC1. Enzymes, 2010. 27: p. 39-56.
34. Yang, L., et al., The mTORC1 effectors S6K1 and 4E-BP play different roles in CNS axon regeneration. Nat Commun, 2014. 5: p. 5416.
35. Rosenwald, I.B., et al., Eukaryotic translation initiation factor 4E regulates expression of cyclin D1 at transcriptional and post-transcriptional levels. J Biol Chem, 1995. 270(36): p. 21176-80.
36. Graff, J.R., et al., Targeting the eukaryotic translation initiation factor 4E for cancer therapy. Cancer Res, 2008. 68(3): p. 631-4.
37. Yang, K., M. Hitomi, and D.W. Stacey, Variations in cyclin D1 levels through the cell cycle determine the proliferative fate of a cell. Cell Div, 2006. 1: p. 32.
38. Kim, S.A., et al., Differential expression of cyclin D1, Ki‑67, pRb, and p53 in psoriatic skin lesions and normal skin. Mol Med Rep, 2018. 17(1): p. 735-742.
39. Seghezzi, G., et al., Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J Cell Biol, 1998. 141(7): p. 1659-73.
40. Shao, X., et al., FGF2 cooperates with IL-17 to promote autoimmune inflammation. Sci Rep, 2017. 7(1): p. 7024.
41. Monteiro, L.B., et al., Leptin Signaling Suppression in Macrophages Improves Immunometabolic Outcomes in Obesity. Diabetes, 2022. 71(7): p. 1546-1561.
42. Nitulescu, G.M., et al., The Akt pathway in oncology therapy and beyond (Review). Int J Oncol, 2018. 53(6): p. 2319-2331.
43. Kotliarova, S., et al., Glycogen synthase kinase-3 inhibition induces glioma cell death through c-MYC, nuclear factor-kappaB, and glucose regulation. Cancer Res, 2008. 68(16): p. 6643-51.
44. Watt, F.M., M. Frye, and S.A. Benitah, MYC in mammalian epidermis: how can an oncogene stimulate differentiation? Nat Rev Cancer, 2008. 8(3): p. 234-42.
45. Arnold, I. and F.M. Watt, c-Myc activation in transgenic mouse epidermis results in mobilization of stem cells and differentiation of their progeny. Curr Biol, 2001. 11(8): p. 558-68.
46. Innocenti, M., et al., Mechanisms through which Sos-1 coordinates the activation of Ras and Rac. J Cell Biol, 2002. 156(1): p. 125-36.
47. Fisher, C., et al., Patterns of epithelial expression of Fos protein suggest important role in the transition from viable to cornified cell during keratinization. Development, 1991. 111(2): p. 253-8.
48. Bernard, M., et al., IL-1beta induces thymic stromal lymphopoietin and an atopic dermatitis-like phenotype in reconstructed healthy human epidermis. J Pathol, 2017. 242(2): p. 234-245.
49. Nutan, F.N., A.J. Kanwar, and D. Parsad, The effect of topically applied corticosteroids on interleukin 1beta levels in patients with atopic dermatitis. J Eur Acad Dermatol Venereol, 2012. 26(8): p. 1020-2.
50. Bianchi, P., et al., Analysis of gene expression in atopic dermatitis using a microabrasive method. J Invest Dermatol, 2012. 132(2): p. 469-72.
51. Tamauchi, H., et al., GATA-3 regulates contact hyperresponsiveness in a murine model of allergic dermatitis. Immunobiology, 2012. 217(4): p. 446-54.
52. Mercurio, L., C. Albanesi, and S. Madonna, Recent Updates on the Involvement of PI3K/AKT/mTOR Molecular Cascade in the Pathogenesis of Hyperproliferative Skin Disorders. Front Med (Lausanne), 2021. 8: p. 665647.
53. Xiao D.Q., Xu P.H., Deng H., Chen L.S., Ding X.A., Bai M., Li P., Yuan D.F. The characterization and clinical significance of PI3K/Akt signaling pathway activation in the peripheral T cells of pediatric patients with atopic dermatitis. Int. J. Clin. Exp. Med. 2017;10:2904–2910.
54. Harvey, J., et al., The long-term safety of topical corticosteroids in atopic dermatitis: A systematic review. Skin Health Dis, 2023. 3(5): p. e268.
55. Lax, S.J., et al., Strategies for using topical corticosteroids in children and adults with eczema. Cochrane Database Syst Rev, 2022. 3(3): p. CD013356.
56. Thomas, K.S., et al., Randomised controlled trial of short bursts of a potent topical corticosteroid versus prolonged use of a mild preparation for children with mild or moderate atopic eczema. BMJ, 2002. 324(7340): p. 768.
57. Berth-Jones, J., et al., Twice weekly fluticasone propionate added to emollient maintenance treatment to reduce risk of relapse in atopic dermatitis: randomised, double blind, parallel group study. BMJ, 2003. 326(7403): p. 1367.
58. Egeberg, A., et al., Adverse events from topical corticosteroid use in chronic hand eczema - Findings from the Danish Skin Cohort. JAAD Int, 2024. 14: p. 77-83.
59. Carr, W.W., Topical calcineurin inhibitors for atopic dermatitis: review and treatment recommendations. Paediatr Drugs, 2013. 15(4): p. 303-10.
60. Siegfried, E.C., et al., Systematic review of published trials: long-term safety of topical corticosteroids and topical calcineurin inhibitors in pediatric patients with atopic dermatitis. BMC Pediatr, 2016. 16: p. 75.
61. Aschoff, R., A. Lang, and E. Koch, Effects of Intermittent Treatment with Topical Corticosteroids and Calcineurin Inhibitors on Epidermal and Dermal Thickness Using Optical Coherence Tomography and Ultrasound. Skin Pharmacol Physiol, 2022. 35(1): p. 41-50.
62. Tintle, S., et al., Reversal of atopic dermatitis with narrow-band UVB phototherapy and biomarkers for therapeutic response. J Allergy Clin Immunol, 2011. 128(3): p. 583-93 e1-4.
63. Branisteanu, D.E., et al., Phototherapy in dermatological maladies (Review). Exp Ther Med, 2022. 23(4): p. 259.
64. Patrizi, A., B. Raone, and G.M. Ravaioli, Management of atopic dermatitis: safety and efficacy of phototherapy. Clin Cosmet Investig Dermatol, 2015. 8: p. 511-20.
65. Hoy, S.M., Baricitinib: A Review in Moderate to Severe Atopic Dermatitis. Am J Clin Dermatol, 2022. 23(3): p. 409-420.
66. Gooderham, M.J., et al., Dupilumab: A review of its use in the treatment of atopic dermatitis. J Am Acad Dermatol, 2018. 78(3 Suppl 1): p. S28-S36.
67. Hijnen, D.J., et al., Efficacy and safety of long-term treatment with cyclosporin A for atopic dermatitis. J Eur Acad Dermatol Venereol, 2007. 21(1): p. 85-9.
68. Al-Nimer, M.S.M. and Z. Wahbee, Ultraviolet light assisted extraction of flavonoids and allantoin from aqueous and alcoholic extracts of Symphytum officinale. J Intercult Ethnopharmacol, 2017. 6(3): p. 280-283.
69. Araujo, L.U., et al., Profile of wound healing process induced by allantoin. Acta Cir Bras, 2010. 25(5): p. 460-6.
70. Juszczak, A.M., et al., Wound Healing Properties of Jasione montana Extracts and Their Main Secondary Metabolites. Front Pharmacol, 2022. 13: p. 894233.
71. Purnamawati, S., et al., The Role of Moisturizers in Addressing Various Kinds of Dermatitis: A Review. Clin Med Res, 2017. 15(3-4): p. 75-87.
72. Seghers, A.C., et al., Evaluation of a Pseudoceramide Moisturizer in Patients with Mild-to-Moderate Atopic Dermatitis. Dermatol Ther (Heidelb), 2014. 4(1): p. 83-92.
73. Gonzalez-Lopez, C. and B.S. Wojeck, Role of metformin in the management of type 2 diabetes: recent advances. Pol Arch Intern Med, 2023. 133(6).
74. Lin, H., et al., The Role and Mechanism of Metformin in Inflammatory Diseases. J Inflamm Res, 2023. 16: p. 5545-5564.
75. Wang, M., et al., Metformin Suppresses LPS-Induced Inflammatory Responses in Macrophage and Ameliorates Allergic Contact Dermatitis in Mice via Autophagy. Biol Pharm Bull, 2020. 43(1): p. 129-137.
76. Monte-Serrano, J., et al., [The role of metformin in the treatment of dermatological diseases: A narrative review]. Aten Primaria, 2022. 54(6): p. 102354.
77. Pei X., Ling Y., Zhu K., Chen W., Gu M. Metformin Attenuates Atopic Dermatitis by Inhibiting CD40 Expression in CD11c+DC via the mTOR Pathway. Nanosci. Nanotechnol. Lett. 2017;9:934–940. doi: 10.1166/nnl.2017.2402.
78. You, Y., et al., U0126: Not only a MAPK kinase inhibitor. Front Pharmacol, 2022. 13: p. 927083.
79. Ye, H., et al., The restraining effect of baicalein and U0126 on human cervical cancer cell line HeLa. Mol Med Rep, 2017. 16(1): p. 957-963.
80. Ge, X., Y.M. Fu, and G.G. Meadows, U0126, a mitogen-activated protein kinase kinase inhibitor, inhibits the invasion of human A375 melanoma cells. Cancer Lett, 2002. 179(2): p. 133-40.
81. Marampon, F., et al., MEK/ERK inhibitor U0126 affects in vitro and in vivo growth of embryonal rhabdomyosarcoma. Mol Cancer Ther, 2009. 8(3): p. 543-51.
82. Chun, K.S., et al., Curcumin inhibits phorbol ester-induced expression of cyclooxygenase-2 in mouse skin through suppression of extracellular signal-regulated kinase activity and NF-kappaB activation. Carcinogenesis, 2003. 24(9): p. 1515-24.
83. Kalb, D., et al., Visualization and modeling of inhibition of IL-1beta and TNF-alpha mRNA transcription at the single-cell level. Sci Rep, 2021. 11(1): p. 13692.
84. Zeze, N., et al., Role of ERK Pathway in the Pathogenesis of Atopic Dermatitis and Its Potential as a Therapeutic Target. Int J Mol Sci, 2022. 23(7).
85. Salwinski, L., et al., The Database of Interacting Proteins: 2004 update. Nucleic Acids Res, 2004. 32(Database issue): p. D449-51.
86. Stark, C., et al., BioGRID: a general repository for interaction datasets. Nucleic Acids Res, 2006. 34(Database issue): p. D535-9.
87. Orchard, S., et al., The MIntAct project--IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res, 2014. 42(Database issue): p. D358-63.
88. Bader, G.D., D. Betel, and C.W. Hogue, BIND: the Biomolecular Interaction Network Database. Nucleic Acids Res, 2003. 31(1): p. 248-50.
89. Zanzoni, A., et al., MINT: a Molecular INTeraction database. FEBS Lett, 2002. 513(1): p. 135-40.
90. Li, J.H., et al., starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res, 2014. 42(Database issue): p. D92-7.
91. Zheng, G., et al., ITFP: an integrated platform of mammalian transcription factors. Bioinformatics, 2008. 24(20): p. 2416-7.
92. Wingender, E., et al., TRANSFAC: an integrated system for gene expression regulation. Nucleic Acids Res, 2000. 28(1): p. 316-9.
93. Friard, O., et al., CircuitsDB: a database of mixed microRNA/transcription factor feed-forward regulatory circuits in human and mouse. BMC Bioinformatics, 2010. 11: p. 435.
94. Agarwal, V., et al., Predicting effective microRNA target sites in mammalian mRNAs. Elife, 2015. 4.
95. Bovolenta, L.A., M.L. Acencio, and N. Lemke, HTRIdb: an open-access database for experimentally verified human transcriptional regulation interactions. BMC Genomics, 2012. 13: p. 405.
96. Hu, T., et al., Assessment of Spatial and Temporal Variation in the Skin Transcriptome of Atopic Dermatitis by Use of 1.5 mm Minipunch Biopsies. J Invest Dermatol, 2023. 143(4): p. 612-620 e6.
97. Zhan, Y.P. and B.S. Chen, Drug Target Identification and Drug Repurposing in Psoriasis through Systems Biology Approach, DNN-Based DTI Model and Genome-Wide Microarray Data. Int J Mol Sci, 2023. 24(12).
98. Su, P.W. and B.S. Chen, Systems Drug Design for Muscle Invasive Bladder Cancer and Advanced Bladder Cancer by Genome-Wide Microarray Data and Deep Learning Method with Drug Design Specifications. Int J Mol Sci, 2022. 23(22).
99. Chen, B.S. and C.C. Wu, Systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering. Cells, 2013. 2(4): p. 635-88.
100. Yeh, S.J., S.W. Chen, and B.S. Chen, Investigation of the Genome-Wide Genetic and Epigenetic Networks for Drug Discovery Based on Systems Biology Approaches in Colorectal Cancer. Front Genet, 2020. 11: p. 117.
101. Yeh, S.J., et al., Comparing progression molecular mechanisms between lung adenocarcinoma and lung squamous cell carcinoma based on genetic and epigenetic networks: big data mining and genome-wide systems identification. Oncotarget, 2019. 10(38): p. 3760-3806.
102. UniProt, C., UniProt: a hub for protein information. Nucleic Acids Res, 2015. 43(Database issue): p. D204-12.
103. Gaulton, A., et al., The ChEMBL database in 2017. Nucleic Acids Res, 2017. 45(D1): p. D945-D954.
104. Ogata, H., et al., KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res, 1999. 27(1): p. 29-34.
105. Wang, Y., et al., Therapeutic target database 2020: enriched resource for facilitating research and early development of targeted therapeutics. Nucleic Acids Res, 2020. 48(D1): p. D1031-D1041.
106. Kim, S., et al., PubChem Substance and Compound databases. Nucleic Acids Res, 2016. 44(D1): p. D1202-13.
107. Kuhn, M., et al., STITCH: interaction networks of chemicals and proteins. Nucleic Acids Res, 2008. 36(Database issue): p. D684-8.
108. Knox, C., et al., DrugBank 3.0: a comprehensive resource for 'omics' research on drugs. Nucleic Acids Res, 2011. 39(Database issue): p. D1035-41.
109. Hsu, B.W. and B.S. Chen, Genetic and Epigenetic Host-Virus Network to Investigate Pathogenesis and Identify Biomarkers for Drug Repurposing of Human Respiratory Syncytial Virus via Real-World Two-Side RNA-Seq Data: Systems Biology and Deep-Learning Approach. Biomedicines, 2023. 11(6).
110. Chang, S., et al., Systems Approach to Pathogenic Mechanism of Type 2 Diabetes and Drug Discovery Design Based on Deep Learning and Drug Design Specifications. Int J Mol Sci, 2020. 22(1).
111. Subramanian, A., et al., A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles. Cell, 2017. 171(6): p. 1437-1452 e17.
112. Corsello, S.M., et al., Discovering the anti-cancer potential of non-oncology drugs by systematic viability profiling. Nat Cancer, 2020. 1(2): p. 235-248.
113. Xiong, G., et al., ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res, 2021. 49(W1): p. W5-W14.