研究生: |
柯冠宇 Ke, Guan-Yu |
---|---|
論文名稱: |
四方晶格的形態不勻向性的起源 The Origin of Morphological Anisotropy for Square Lattice |
指導教授: |
吳國安
Wu, Kuo-An |
口試委員: |
陳培亮
吳天鳴 Wu, Ten-Ming |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 40 |
中文關鍵詞: | 相場晶體模型 、界面能 、固液界面 、各向異性 |
外文關鍵詞: | phase-field crystal model, interface energy, solid-liquid interface, anisotropy |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
形態不勻向性是固液介面上的一個重要特性並且能夠決定固化過程中的樹突結
構。我們使用兩模相場晶格模型和以其推導而來的振幅方程式來研究二維四方
晶格的表面能不勻向性。我們發現此不勻向性主要是來自於密度波的振幅在固
液介面上的不同變化造成的,同時第二模式的強度能夠大幅度的影響表面不勻
向性,甚至造成大小順序的反轉。在本文中,我們成功的利用自由能的對稱性
來解釋這種順序反轉。
Morphological anisotropy, which can dictate the dendrite growth in solidification, is an essential property for the solid-liquid interface. We use the two-mode phase-field crystal model and the amplitude equation derived from it to study the anisotropy of interface energy in the two-dimensional square lattice. We find that the anisotropy of interface energy is determined by how amplitudes of the density wave change through the interface. Moreover, the strength of the second mode has a strong influence on the interface energy, even reversing the ordering of its anisotropy. In this thesis, we successfully use the symmetry property of the free energy to explain this ordering reversal.
[1] W Kurz and DJ Fisher. Fundamentals of solidification. Trans. Tech. Aedermannsdorf, Switzerland, page 85, 1989.
[2] JS Langer. Models of pattern formation in first-order phase transitions. In Directions in Condensed Matter Physics: Memorial Volume in Honor of Shang-Keng Ma, pages 165–186. World Scientific, 1986.
[3] James S Langer. Instabilities and pattern formation in crystal growth. Reviews of modern physics, 52(1):1, 1980.
[4] Adam A Wheeler, William J Boettinger, and Geoffrey B McFadden. Phasefield model for isothermal phase transitions in binary alloys. Physical Review A, 45(10):7424, 1992.
[5] GB McFadden, AA Wheeler, RJ Braun, SR Coriell, and RF Sekerka. Phasefield models for anisotropic interfaces. Physical Review E, 48(3):2016, 1993.
[6] Berni Julian Alder and Thomas Everett Wainwright. Phase transition for a hard sphere system. The Journal of chemical physics, 27(5):1208–1209, 1957.
[7] JJ Hoyt and Mark Asta. Atomistic computation of liquid diffusivity, solidliquid interfacial free energy, and kinetic coefficient in au and ag. Physical Review B, 65(21):214106, 2002.
[8] DY Sun, M Asta, JJ Hoyt, MI Mendelev, and DJ Srolovitz. Crystal-melt interfacial free energies in metals: fcc versus bcc. Physical Review B, 69(2): 020102, 2004.
[9] Majeed Amini and Brian B Laird. Kinetic coefficient for hard-sphere crystal growth from the melt. Physical review letters, 97(21):216102, 2006.
[10] Ebrahim Asadi, Mohsen Asle Zaeem, Sasan Nouranian, and Michael I Baskes. Two-phase solid–liquid coexistence of ni, cu, and al by molecular dynamics simulations using the modified embedded-atom method. Acta Materialia, 86:169–181, 2015.
[11] KR Elder and Martin Grant. Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals. Physical Review E, 70(5): 051605, 2004.
[12] Kuo-An Wu and Alain Karma. Phase-field crystal modeling of equilibrium bcc-liquid interfaces. Physical Review B, 76(18):184107, 2007.
[13] Rainer Backofen and Axel Voigt. A phase-field-crystal approach to critical nuclei. Journal of Physics: Condensed Matter, 22(36):364104, 2010.
[14] Gyula I Tóth, György Tegze, Tamás Pusztai, Gergely Tóth, and László Gránásy. Polymorphism, crystal nucleation and growth in the phase-field crystal model in 2d and 3d. Journal of Physics: Condensed Matter, 22(36): 364101, 2010.
[15] Tao Yang, Zheng Chen, Jing Zhang, Yongxin Wang, and Yanli Lu. Unifying the crystallization behavior of hexagonal and square crystals with the phasefield- crystal model. Chinese Physics B, 25(3):038103, 2016.
[16] M Schmiedeberg, CV Achim, J Hielscher, SC Kapfer, and H Löwen. Dislocation-free growth of quasicrystals from two seeds due to additional phasonic degrees of freedom. Physical Review E, 96(1):012602, 2017.
[17] Sai Tang, Jincheng Wang, Junjie Li, Zhijun Wang, Yaolin Guo, Can Guo, and Yaohe Zhou. Phase-field-crystal investigation of the morphology of a steadystate dendrite tip on the atomic scale. Physical Review E, 95(6):062803, 2017.
[18] J Berry, M Grant, and KR Elder. Diffusive atomistic dynamics of edge dislocations in two dimensions. Physical Review E, 73(3):031609, 2006.
[19] Pak Yuen Chan, Georgios Tsekenis, Jonathan Dantzig, Karin A Dahmen, and Nigel Goldenfeld. Plasticity and dislocation dynamics in a phase field crystal model. Physical review letters, 105(1):015502, 2010.
[20] Yingjun Gao, Lilin Huang, Qianqian Deng, Wenquan Zhou, Zhirong Luo, and Kui Lin. Phase field crystal simulation of dislocation configuration evolution in dynamic recovery in two dimensions. Acta Materialia, 117:238–251, 2016.
[21] Pak Yuen Chan and Nigel Goldenfeld. Nonlinear elasticity of the phase-field crystal model from the renormalization group. Physical Review E, 80(6): 065105, 2009.
[22] N Pisutha-Arnond, VWL Chan, KR Elder, and K Thornton. Calculations of isothermal elastic constants in the phase-field crystal model. Physical Review B, 87(1):014103, 2013.
[23] Sh Alexander and J McTague. Should all crystals be bcc? landau theory of solidification and crystal nucleation. Physical Review Letters, 41(10):702, 1978.
[24] Ken R Elder, Nikolas Provatas, Joel Berry, Peter Stefanovic, and Martin Grant. Phase-field crystal modeling and classical density functional theory of freezing. Physical Review B, 75(6):064107, 2007.
[25] Kuo-An Wu, Ari Adland, and Alain Karma. Phase-field-crystal model for fcc ordering. Physical review E, 81(6):061601, 2010.
[26] Joel Berry, Nikolas Provatas, Jörg Rottler, and Chad W Sinclair. Defect stability in phase-field crystal models: Stacking faults and partial dislocations. Physical Review B, 86(22):224112, 2012.
[27] Ari Adland, Yechuan Xu, and Alain Karma. Unified theoretical framework for polycrystalline pattern evolution. Physical review letters, 110(26):265504, 2013.
[28] Zhencheng Jiang, Silong Quan, Ning Xu, Linghui He, and Yong Ni. Growth modes of quasicrystals involving intermediate phases and a multistep behavior studied by phase field crystal model. Physical Review Materials, 4(2):023403, 2020.
[29] SK Mkhonta, KR Elder, and Zhi-Feng Huang. Exploring the complex world of two-dimensional ordering with three modes. Physical review letters, 111(3): 035501, 2013.
[30] Kuo-An Wu and Peter W Voorhees. Phase field crystal simulations of nanocrystalline grain growth in two dimensions. Acta Materialia, 60(1):407– 419, 2012.
[31] Shang-Chun Lin, Ming-Wei Liu, Mogadalai P Gururajan, and Kuo-An Wu. Modified young’s equation for equilibrium dihedral angles of grain boundary grooves in thin films at the nanoscale. Acta Materialia, 102:364–372, 2016.
[32] Jesper Mellenthin, Alain Karma, and Mathis Plapp. Phase-field crystal study of grain-boundary premelting. Physical Review B, 78(18):184110, 2008.