簡易檢索 / 詳目顯示

研究生: 葉亘芙
Yeh, Hsuen-Fu
論文名稱: Implementation of Steganography Using LSB Replacement and Number Theory
應用LSB取代法與數論於藏密學之實作
指導教授: 陳朝欽
Chen, Chaur-Chin
口試委員: 陳朝欽
蘇豐文
陳建彰
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊系統與應用研究所
Institute of Information Systems and Applications
論文出版年: 2011
畢業學年度: 100
語文別: 英文
論文頁數: 21
中文關鍵詞: 藏密
外文關鍵詞: LSB replacement, number theory, primitive root, steganography
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • This thesis implements a steganographic method which encrypts the secret message by exponential and modular operations before hiding data to improve the security. For the cover image, we also do an affine transform based on the locations of pixels before embedding the bits. The secret message encryption is a sequence of bits obtained from shuffling the bits of the secret message according to the concept of an exponential and modular arithmetic. We first select a prime number p and convert a secret message into many sets of a bit sequence S[i], 1□ S[i]<p, according to ASCII representation of each character, we can choose a primitive root g, 1<g<p, such that {gk mod p, for 1□k<p} is the same as {1,2,3,…,p-1}, then shuffle the bit sequence S into B such that B[i] = gS[i] mod p. On the other hand, we do an affine transform on a cover image, then we replace the k least significant bits of each pixel on the affine transformed cover-image with B. The extraction of the secret message is based on solving a discrete logarithm problem which is regarded as a difficult problem when p is large. Experiments with different cover images, secret messages, and prime number p are provided.


    Chapter 1 Introduction Chapter 2 Background Review 2.1 Number Theory 2.1.1 Primitive Roots 2.1.2 Affine Transform 2.2 The Least Significant Bit (LSB) method Chapter 3 Proposed Data Hiding Method 3.1 Motivation 3.2 Proposed method 3.2.1 Embedding algorithm 3.2.2 Extraction algorithm 3.2.3 Analysis Chapter 4 Experimental Results Chapter 5 Conclusion and Future Work References

    [Ande1998] R.J. Anderson and F.A.P. Petitcolas, "On the limits of steganography",IEEE Journal of Selected Areas in Communications,, vol. 16, no. 4, 474-481, 1998.
    [Chan2004] C.K. Chan and L.M. Cheng, "Hiding data in images by simple LSB substitution", Pattern Recognition Letters, vol. 37, no. 3, 469–474, 2004.
    [Kim2008] K. J. Kim, K. H. Jung, and K. Y. Yoo, "A High Capacity Data Hiding Method Using PVD and LSB", Proceedings of International Conference on Computer Science and Software Engineering, vol. 3,876–879, 2008.
    [Marw2010] Marwaha, P., "Visual cryptographic steganography in images", IEEE Computing Communication and Networking Technologies (ICCCNT), 2010 International Conference on, 1-6, 2010.
    [Mede2011] Medeni, M.B.O., Souidi, E.-M., "A novel steganographic method for gray-level images with four-pixel differencing and LSB substitution ", IEEE Multimedia Computing and Systems (ICMCS), 2011 International Conference on, 1-4, 2011.
    [Miel2006] J. Mielikainen, "LSB matching revisited", IEEE Signal Processing Letters, vol. 13, no. 5, 285-287, 2006.
    [Sabe2007] A. Sabeti, S. Samavi, and M. Mahdavi, "Steganalysis of Pixel-Value Differencing Steganographic Method", IEEE Pacific Rim Communications, Computers and Signal Processing, 292-295, 2007.
    [Trap2006] W. Trappe and L.C. Washington, Introduction to Cryptography with Coding Theory, Pearson International Edition (2006).
    [Tsai2010] Tsai, Meng-Fen, "Steganography by LSB Replacement Using Message Bit Shuffling ", M.S. Thesis, National Tsing Hua University, Hsinchu, Taiwan, May 2010.
    [Wang2001] R.Z. Wang, C.F. Lin, and J.C. Lin, "Image hiding by optimal LSB substitution and genetic algorithm", Pattern Recognition, vol. 34, no. 3, 671-683, 2001.
    [Wu2003] D.C. Wu and W.H. Tsai, "A steganographic method for images by pixel-value differencing", Pattern Recognition Letters, vol. 24, no. 9-10, 1613-1626, 2003.
    [Web01] http://en.wikipedia.org/wiki/Steganography, last access on September 26, 2011.
    [Web02] http://en.wikipedia.org/wiki/Primitive_root_modulo_n, last access on October 21, 2011.
    [Web03] http://math.arizona.edu/~savitt/mathcamp/1999/primitive_roots.pdf, last access on October 21, 2011.
    [Web04] http://en.wikipedia.org/wiki/Affine_transformation, last access on October 21, 2011.
    [Web05] http://news.stanford.edu/news/2005/june15/grad-061505.html, last access on October 21, 2011.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE