研究生: |
朱宏耀 Chu, Hung-Yao |
---|---|
論文名稱: |
利用石墨烯薄膜與雙層奈米金結構製備具高表面增強效應之拉曼散射檢測器 Strong SERS Biosensor With Gold Nanostructure Sandwiched On Graphene |
指導教授: |
曾繁根
Tseng, F.G 王本誠 Wang, P.C |
口試委員: |
魏培坤
蘇清源 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 75 |
中文關鍵詞: | 拉曼散射 、奈米金球 、石墨烯薄膜 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究研發一種雙層奈米金以石墨烯薄膜為夾層之三維結構用於強化表面增強拉曼散射之生物感測器之性能。石墨烯薄膜材料因著其出色的物理及化學特性成為近年來在電子與光電元件領域極具發展潛力的材料,例如其具有高熱導性、高強度機械性質和高電子傳導特性…等。表面增強拉曼散射光譜近年來逐漸發展成分辨化學結構及未知樣品之有效工具,典型之表面增強拉曼散射是藉由電漿共振耦合引致極化效應所產生之現象,而製造大量拉曼增強效應之結構是目前所使用的主要方法,其中尺寸大於30奈米之奈米粒子或奈米結構陣列被大量的使用。此外,強烈的耦合效應通常只發生在幾個奈米的間距之間。
有鑑於以上之需求,我們合成尺寸約10奈米的金球並且使用厚度約0.34奈米的單層石墨烯薄膜分離兩層金奈米結構。利用這樣的結構我們可以進一步的增強表面增強拉曼散射的效果並且也可使整體結構尺寸更接近甚至小於10奈米,讓此結構更適合應用於生物量測的領域。
本研究建構兩種金屬結構系列:奈米金球 / 石墨烯薄膜 / 奈米金球 ( GNP / SLG / GNP ) 、 奈米金球 / 石墨烯薄膜 / 奈米島狀金 ( GNP / SLG / GNI ),主要差別在於第二層的材料製成。對於 GNP / SLG / GNI 系列的結構而言,因第二層奈米島狀金膜的覆蓋,使得訊號得以獲得一定程度的提升,但當將第二層材料換為 GNP / SLG / GNP 系列的金球時,因著hotspot區域的增加使得拉曼訊號得以獲得更進一步大幅度的增加,其訊號提昇倍率相較傳統金球陣列達到57倍的增強,並且可將待測之拉曼分子其拉曼光譜完整且清楚的呈現。
[1] X. Dou, Y. Yamaguchi, H. Yammamoto, S. Doi, Y. Ozaki, ”Quantitative analysis of metabolites in urine using a highly precise, compact near-infrared Raman spectrometer”, Vibrational spectroscopy, 13, 83-89, 1996
[2] J. W. McMurdy III, A. J. Berger, “Raman Spectroscopy-Based Creatinine Measurement in Urine Samples from a Multipatient Population”, Applied Spectroscopy 57, 5, 2003
[3] J. R. Baenal, B. Lendl, ” Raman spectroscopy in chemical bioanalysis ”, Current Opinion in Chemical Biology, 8, 534–539, 2004
[4] R. L. McCreery, “Raman Spectroscopy for chemical analysis”, New York: Wiley Interscience, 2000
[5] M. Fleischmann, P. J. Hendra, A. J. McQuillan, "Raman Spectra of Pyridine Adsorbed at a Silver Electrode", Chemical Physics Letters, 26, 163–166, 1974
[6] A. Campion, P. Kambhampati, “Surface-enhanced Raman scattering”, Chemical Society Reviews, 27, 241-250, 1998
[7] Y. Maruyama, M. Ishikawa, M. Futamata, “ATR-SNOM Raman Spectroscopy using Surface Plasmon Polariton”, Analytical Science, 17, 2001
[8] S. Nie, S. R. Emory, ” Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering”, Science, 275, 1997
[9] M. Moskovits, “Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals”, J. Chem. Phys., 69, 1459-1461, 1978
[10] Mortazavi1, A. Z. Kouzani1, A. Kaynak, and W. Duan, “DEVELOPING LSPR DESIGN GUIDELINESD.” Progress In Electromagnetics Research,126(2012)
[11] K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari and M.S. Feld, “Surface-enhanced Raman scattering and biophysics”, J. Phys.: Condens. Matter, 14, 597-624, 2002
[12] M. Moskovits, ”Surface-enhanced spectroscopy”, Reviews of modern physics, 57, 785-826, 1985
[13] 陳士孝,表面電漿共振對拉曼散射強化效應,1986
[14] K. Kneipp et al., Phys. Rev. Lett., 78, 1667, 1997.
[15] Campion, et al., Chem. Soc. Rev., 27, 241, 1998
[16] M. Kuwahara, T. Nakano, C. Mihalcea, T. Shima, J. H. Kim, J. Tominaga, and N. Atoda, “Less than 0.1um linewidth fabrication by visible light using super-resolution near-field structure” Microelectronic Engineering, 57-58, 883-890, 2011
[17] J. J. Chyou, S. J. Chen, C. S. Chu, et al., “Multi-experiment linear data analysis for ATR biosensors, “ Proc. SPIE, 2002
[18] D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection”, Nature Material, 9, 2010
[19] W. Rechberger, A. Hohenau, A. Leitner, J. R, Krenn, B. Lamprecht, F. R. Aussenegg, ”Optical propertices of two interacting gold nanoparticles”, Optics Communications, 220, 137-141, 2003
[20] P. K. Jain, W. Huang, M. A. El-Sayed, “On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation”, Nano Letters, 7, 7, 2080-2088, 2007
[21] P. G. Etchegoin, E. C. Le Ru, “A perspective on single molecule SERS: current status and future challenges”, J. Phys. Chem. Chem. Phys., 10, 6079–6089, 2008
[22] E. C. Le Ru, P. G. Etchegoin and M. Meyer, J. Chem. Phys.,
125, 204701, 2006
[23] A. Cunningham, S. Mühlig, C. Rockstuhl, T. Bürgi, “Coupling of Plasmon Resonances in Tunable Layered Arrays of Gold Nanoparticles”, J. Phys. Chem. C, 115, 8955–8960, 2011
[24] G. Decher, Science, 277, 1232–1237, 1997
[25] J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, A. Plech, J. Phys. Chem. B 110, 15700–15707, 2006
[26] J. R. Williams, L. C. DiCarlo and C. M. Marcus, Science 317, 638 (2007).
[27] J. H. Chen, C. Jang, S. D. Xiao, M. Ishigami and M. S. Fuhrer, Nat. Nanotechnol. 3, 206 (2008).
[28] Xi Ling, Liming Xie, Yuan Fang, Hua Xu, Haoli Zhang, Jing Kong Mildred S. Dresselhaus, Jin Zhang, and Zhongfan Liu, “Can Graphene be used as a Substrate for Raman Enhancement ?” NANO LETTERS, 10, (2010)
[29] Yingying Wang, Zhenhua Ni, Hailong Hu, Yufeng Hao, Choun Pei Wong, “Gold on graphene as a substrate for surface enhanced Raman scattering study” Yingying Wang, Zhenhua Ni, Hailong Hu, Yufeng Hao, Choun Pei Wong, APPLIED PHYSICS LETTERS, 97, 163111 (2010)
[30] Youxing Fang, Shaojun Guo, Chengzhou Zhu, Yueming Zhai, and Erkang Wang,” Self-Assembly of Cationic Polyelectrolyte-Functionalized Graphene Nanosheets and Gold Nanoparticles: A Two-Dimensional Heterostructure for Hydrogen Peroxide Sensing”, Langmuir 2010, 26 (13)
[31] Wen Ren, Youxing Fang, and Erkang Wang, “A Binary Functional Substrate for Enrichment and Ultrasensitive SERS Spectroscopic Detection of Folic Acid Using Graphene Oxide/Ag Nanoparticle Hybrids”, NANO LETTERS, 6425–6433, ( 2011 )
[32] Ying ying Wang, Zhenhua Ni,Ting Yu, Ze Xiang Shen, Hao min Wang, Yi hong Wu, Wei Chen and Andrew Thye Shen Wee,”Raman Studied on Monolayer Graphene : The Substrate Effect” ,J phys. Chem. C ,112, ( 2008 )