研究生: |
鄭力維 Jheng, Li-Wei |
---|---|
論文名稱: |
一個可在100ns的時段上達到1.5ps時間解析度的超寬頻脈衝雷達之時序電路 A Timing Circuitry of UWB Impulse Radar Achieving 1.5ps Time Resolution over 100ns |
指導教授: |
朱大舜
Chu, Ta-Shun |
口試委員: |
朱大舜
Chu, Ta-Shun 王毓駒 Wang, Yu-Jiu 吳仁銘 Wu, Ren-Ming |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 39 |
中文關鍵詞: | 時序電路 、鎖相迴路 |
外文關鍵詞: | timing circuitry, phase-locked loop |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
系所別:電機工程學系 系統組
論文名稱:一個可在週期為100ns脈衝上達到1.5ps時間解析度的超寬頻脈衝雷達之時序電路
指導教授:朱大舜 博士
研究生:101061594 鄭力維
在現今我們所熟知的無線技術,不管是藍芽或 Wi-Fi 等等,主要的發展應用還是受制於頻寬,使得許多處理量大或品質高的資訊及檔案,無法快速傳輸;而超寬頻就是解決目前資訊用途短距傳輸的關鍵。
超寬頻技術在過去已有不短的發展時間,尤其是在軍事方面,可以用於雷達,偵測空中的不明飛行物體;或者用於探測地底下的不明物體,如地雷,以保障人員生命安全等等。
而超寬頻技術具有體積小、耗電低、成本低等優點,因此如果將超寬頻技術導入民生用途上想必非常適合,也會為人類的生活帶來更多的便利。
在本論文中,為了讓超寬頻脈衝雷達能擁有更好的時間解析度,提出並實現了一個使用鎖相迴路與位移寄存器結合的時序電路,使超寬頻脈衝雷達能在週期為100ns的脈衝上,達到1.5ps的時間解析度。其中包含三個鎖相迴路,一個用來確保雷達傳送端與接收端訊號的同步性,另外兩個則用於時序電路的實現。時序電路以位移寄存器為主,分成兩個部分,一部分為粗調電路,另一部分為細調電路,分成粗細調主要是防止使用太多級位移寄存器而導致電路無法運作。傳送端與接收端訊號經過位移寄存器後會產生出多個相位不同的訊號,最後再使用MUX選出我們需要的傳送端與接收端訊號做比較,計算出兩端的距離。
本論文共分五個章節,第一章為研究動機與簡介;第二章為鎖相迴路架構、及內部子電路架構與操作原理;第三章為本論文提出的時序電路架構與操作原理;第四章為軟體之模擬結果,並做討論;第五章為總結。
Abstract
Department:Electrical Engineering
Title:A Timing Circuitry of UWB Impulse Radar Achieving 1.5ps Time Resolution over 100ns
Advisor:Prof. Ta-shun Chu
Graduate student:101061594 Li-Wei Jheng
In today's wireless technology as we know, whether Bluetooth or Wi-Fi, and so on, the main
subjects of the developing application are limited to the bandwidth, making many large capacity
and high-quality information and files cannot be fast transferred. The ultra-wideband technology
is the key to solve the current application of short-range transmission of information.
Ultra-wideband technology has developed not short of time in the past, especially in the
military field. Such as radar can be used to detect UFO or unknown object underground, such as
mines, in order to protect the safety of personnel and so on. The advantage of ultra-wideband
technology is small size, low power consumption, and low cost, so if imported ultra wideband
technology into livelihood purposes is very suitable presumably, it will bring more convenience to
people's lives.
In this thesis, to make ultra-wideband impulse radar can have a better time resolution, we
proposed and implemented a timing circuitry combines phase-locked loops and shift registers,
making the ultra-wideband impulse radar can achieve 1.5ps time resolution over 100ns. It contains
three phase-locked loops, one to ensure the synchronization of the transmitter and receiver radar
signal, the other two are used to implement the timing circuitry. Timing circuitry is mainly
constituted by shift registers, it divided into two parts, one part for the coarse-tune circuit, the
other for the fine-tune circuit. We do it is to prevent to use too much shift registers which will led
to the circuit does not work. Transmitter and receiver signal after the shift register will generate
multiple signals of different phases, and finally we need to use the MUX select transmitter and
receiver signal compared to calculate the distance from both ends.
This Thesis is divided into five chapters, the first chapter is the motivation and Introduction,
the second chapter is phase-locked loop architecture, and internal sub-circuit architectures and
principles of operation, the third chapter is the timing circuitry structure and principle of operation
that we have proposed, chapter IV is the simulation results, and we’ll make some discussions, and
the fifth chapter is summary.
參考文獻
[1] 劉深淵, 楊清淵, 鎖相迴路, 滄海書局, 2006.
[2] 高曜煌, 射頻鎖相迴路IC設計, 滄海書局, 2005.
[3] W. RHEE, “Design of high performance CMOS charge pumps in phase locked loop”. Proc.
IEEE Int. Symp. Circuits and Systems, 1999, Vol. 1, pp. 545-548.
[4] C.S. Vaucher, I. Ferencic, M. Locher, S. Sedvallson, U. Voegli, and Z. Wang, “A Low-power
Truly-modular 1.8GHz Programmable Divider in Standard CMOS Technology.” IEEE
Journal of Solid-State Circuit, vol. 35, no. 7, pp. 1039-1046, July 2000.
[5] R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, pp. 1380-1385,
Oct. 1973.
[6] J. Yuan and C. Svensson, “High-speed CMOS circuit technique,” IEEE J. Solid-State Circuit,
vol. 24, no. 2, pp. 62-70, 1989.
[7] J. Lee, M. Keel, S. Lim, and S. Kim, “Charge pump with perfect current matching
characteristics in phase-locked loops,” Electronics Letters, vol. 36, no. 23, pp. 1907-1908,
Nov. 2000.
[8] A.M.G. Arguello, J. Navarro, W. Van Noije, “A 3.5 mW Programmable High Speed
Frequency Divider for a 2.4 GHz CMOS Frequency Synthesizer,” IEEE Integrated Circuits
and Systems Design, pp. 144-148, Sep. 2005.
[9] Wen-Ting Liu, Xiao-Lin Zhang, Wen-Bo Xia, “A low power high-speed programmable
divider for GHz frequency synthesizer,” Communications, Circuits and Systems (ICCCAS),
2010 International Conference, pp. 714-717, July 2010.
[10] S. B. Sleiman, J. G. Atallah, S. Rodrigues, A. Rusu, and M. Ismail, “Wide-Division-Range
High-Speed Fully programmable Frequency Divider,” IEEE Workshop on Circuits and
Systems and TSISA conf., pp. 17-20, June 2008.
[11] Won-Hyo Lee, Jun-Dong Cho, Sung-Dae Lee, “A High Speed and Low Power
Phase-Frequency Detector and Charge-pump,” Proceedings of the ASP-DAC ’99. Asia and
South Pacific on Design Automation Conference, pp. 18-21, Jan. 1999.
[12] H.M.S. Fazeel, L. Raghavan, C. Srinivasaraman, M. Jain, “Reduction of Current Mismatch in
PLL Charge Pump,” IEEE Computer Society Annual Symp., pp. 7-12, May 2009.
[13] M.M. Mansour, “On the design of low phase-noise CMOS LC-tank oscillators,” IEEE
Microelectronics on International Conference, pp. 407-412, Dec. 2008.
[14] Ding-Ming Xie, L. Forbes, “Phase noise on a 2-GHz CMOS LC oscillator,” IEEE
Computer-Aided Design of Integrated Circuits and Systems on Transactions, vol. 19, no. 7,
pp. 773-778, July 2000.
[15] J. Roche, W. Rahajandraibe, L. Zaid, G. Bracmard, H. Barthelemy, “A low-noise fast-settling
phase locked loop with loop bandwidth enhancement,” IEEE Northeast Workshop on
Circuits and Systems and TAISA Conference, pp. 165-168, Jun. 2008