研究生: |
黃韋蓉 |
---|---|
論文名稱: |
國小二到五年級學童在正整數乘法之解題表現 |
指導教授: | 林碧珍 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
|
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 180 |
中文關鍵詞: | 乘法 、表徵 、國小 、層次 |
外文關鍵詞: | multiplication, representation, elementary school, level |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討國小二到五年級的學童在乘法的表徵方面的解題表現,並依照其在測驗中的表現給予不同的層次區分,從縱的方面看兒童的學習;另一方面,分別從乘法方面及表徵方面看學童在此兩個面向的表現;而最後從各層次中選出答對率高於50%的試題,希望找出適合各層次的試題。本研究針對二到五年級的學童進行測驗,而在測驗之後從學童實際的表現將其區分層次,探討學童年級與層次間的關係。而區分層次的方法是使用FCM演算法進行分群。研究對象採立意取樣,採用新竹縣市三所小學的二到五年級學童,共36個班級,有效樣本992位。本研究發現:
(一) 從測驗的整體回答來看,年級越高、表現越好,五年級表現的最好,依序是四年級、三年級、二年級;年級越高越能夠一致地使用交換律解題。
(二) 從各層次的表現而言,區分的四個層次,每個層次間存在顯著性差異,且隨著層次提升、表現越好。二年級的學童大部分分佈於層次Ⅰ、Ⅱ,三年級的學童大部分分佈於層次Ⅱ、Ⅲ,四年級的學童大部分分佈於層次Ⅲ、Ⅳ,而五年級的學童大部分分佈於層次Ⅳ。層次Ⅰ的學童堅持使用交換律解題,而層次越高使用率越高。
(三) 在乘法方面,學童在乘法性質表現最差,其他方面則無顯著性差異;在單位量概念、問題情境及乘法性質中,越高年級的學童表現的越好,而在乘法基本事實中,除了三、四年級無差異外,越高年級依舊表現較好。
(四) 從表徵方面,學童在「創造使用表徵」表現最好,「解釋數學表徵」次之,而「選擇運用轉換表徵」最差。
(五) 試題表現方面,層次Ⅰ的學童對於創造表徵的試題較能夠掌握,而在辨識表徵方面的試題都沒有答對率超過50%以上。層次Ⅱ的學童在測驗中的表現,答對19題,但是對於辨識表徵的題目還是有些困難(十題中只答對四題)。而在層次Ⅲ中,對於大部分的題目都能夠掌握,只有在乘法的性質中的四題及一題組合型問題。最後,層次Ⅳ的學童能夠正確回答此測驗的所有問題。
The objective of this research was to determine the competency of 2nd to 5th grade primary school students in multiplication skills. The data were analyzed to determine the participants' performance of the different grade levels. It was observed that primary school students, through the results of the examinations, answered at a fifty percent or greater rate. In addition, different grade levels were distinguished to show the connection. A total of nine hundred and ninety two students were sampled between the grade levels from three primary schools of HsinChu County. The results are as follows:
1. The results indicated that students from the 5th grade level performed the best, followed by the 4th, 3rd, and 2nd.
2. Within the different grade levels, students performed at different levels. It turned out that students from the grade levels had attained significantly higher performance at higher level questions than the students at the lower level grades.
3. In basic multiplication, it was determined that primary school students performed the worst. There no significant difference between the grades levels when tested on the concept of unit, question occasion and the nature of multiplication. It was also decerned that students from the higher grade levels performed better in the basic factor of multiplication, but students from the 3rd and 4th grades had no significant difference in their results.
4. Primary students performed best in the representation of creative use, then explanation of mathematics but did not perform well in the representation of selection transformation
5. In evaluating the results of the examinations, students of grade could understand the concept of creative use, but failed to answer over 50% of the time in representation of identification. The students from the 2nd level could do better, but still had difficulty in representation of identification. The results form the higher grades showed an increasing improvement in performance resulting in 5th grade students answering all the questions correctly.
參考文獻:
一、中文部分:
牛頓公司(民91)。國民小學數學教學指引、課本、習作(第三∼十冊)。台北:牛頓。。
余民寧(民86)。教育測驗與評量:成就測驗與教學評量。台北市:心理。
吳明穎(民91)。國小數學教科書內容分析之研究。國立屏東師範學院數理教育研究所碩士論文,未出版,屏東市。
李光榮(民86)。國小兒童正整數乘除概念之研究:一個國小四年級兒童之個案研究。國立嘉義師範學院國民教育研究所碩士論文,未出版,嘉義市。
周文欽(民91)研究方法—實徵性研究取向。台北市:心理。
周筱亭、黃敏晃主編,蔣治邦、謝堅、陳竹村、吳淑娟、林昭珍編著(民89)。國小數學教材分析-整數的乘除運算。台北:台灣省國民學校教師研習會。
林子幼(民91)。「國小三年級數學科正整數乘法概念之探究」--以試題選項特徵曲線為分析基礎。國立台中師範學院教育測驗統計研究所碩士論文,未出版,台中市。
林美惠(民86)。題目表徵型式與國小二年級學生加減法解題之相關研究。國立嘉義師範學院國民教育研究所碩士論文,未出版,嘉義市。
林傑斌(民91)。SPSS 11.0與統計模式建構。台北:文魁資訊。
林碧珍(民80)。國小兒童對於乘除法應用問題之認知結構,新竹師範學院學報,第五期。
南一書局(民89)國民小學數學教學指引、課本、習作(第三∼十冊)。台南:南一。
康軒文教(民89)。國民小數數學教學指引、課本、習作(第三∼十冊)。台北:康軒。
張春興(民78)。張氏心理學辭典。台北:東華。
教育研究法:研究設計實務(民92)。台北:心理。(原著出版年:2000年)
教育部(民82)。國民小學課程標準。台北:台捷。
教育部(民90)。國民中小學九年一貫課程暫行綱要數學學習領域。台北:教育部。
教育部九年一貫數學學習領域綱要修訂小組(民92)。九年一貫數學學習領域綱要修訂草案(再修正版)。
教育測驗與評量(柳玉清、王淑敏、邱美秀譯)(民86)。台北市:五南。(原著出版年:1996年)
曹郁玲(民89)。國小六年級學生乘法概念數學解題溝通能力之表現分析。國立台南師範學院國民教育研究所碩士論文,未出版,台南市。
許淑萍(民91)。國小學生乘除法表徵能力與後設認知相關之研究。國立台中師範學院教育測驗統計研究所碩士論文,未出版,台中市。
陳美芳(民84)。「學生因素」與「題目因素」對國小高年級兒童乘除法應用問題解題影響之研究。國立台灣師範大學教育心理與輔導研究所博士論文,未出版,台北市。
陳英豪、吳裕益(民84)。測驗與評量(二版)。高雄市:復文。
陳啟明(民88)。不同題目表徵型式及相關因素對國小五年級學生解題表現之影響。國立嘉義大學國民教育研究所碩士論文,未出版,嘉義市。
陳淑琳(民91)。國小二年級學童乘法文字題解題歷程之研究/以屏東市一所國小為例。國立屏東師範學院數理教育研究所碩士論文,未出版,屏東市。
游自達(民84)。數學學習與理解之內涵-從心裡學觀點分析。國立台中師範學院初等教育研究所初等教育研究集刊,3,31-45。
甯自強(民83)。新課程對乘法啟蒙教材的處理。載於教育部台灣省國民學校研習會(編),國民小學數學科新課程概說(低年級)(頁77-85),台北:教育部台灣省國民學校研習會。
楊壬孝(民76)。國中小學生分數概念的發展。行政院國家科學委員會專題研究計畫成果報告(編號:NSC-76-0111-S-003-10)。執行單位。國立台灣師範大學數學系。
楊壬孝(民77)。國中小學生分數概念的發展。行政院國家科學委員會專題研究計畫成果報告(編號:NSC-77-0111-S-003-09A)。執行單位。國立台灣師範大學數學系。
楊壬孝(民78)。國中小學生分數概念的發展。行政院國家科學委員會專題研究計畫成果報告(編號:NSC-78-0111-S-003-06A)。執行單位。國立台灣師範大學數學系。
蔣治邦(民82)。中低年級學童加減法概念之研究。行政院國家科學委員會專題研究計畫成果報告(編號:NSC-81-0301-H004-014- L1)。
歐滄和(民85)。信度。載於(主編),心理與教育測驗(49-85頁)。台北:心理。
蔣治邦(民83)。由表徵觀點探討新教材數與計算活動的設計。載於教育部台灣省國民學校研習會(編),國民小學數學科新課程概說(低年級)(頁60-76)。台北:教育部台灣省國民學校研習會。
羅素貞(民85)。問題表徵與問題解決。屏東師院學報,9,149-167。
二、英文部分:
Anghileri, J. and Johnson, D. C. (1988). Arithmetic operations on whole numbers: multiplication and division. In T. R. Post (Ed.), Teaching mathematics in grade K-8 (pp.146-189). Boston, MA: Allyn and Bacon.
Bell, A., Greer, B., Grimison, L., & Mangan, C. (1989). Children’s performance on multiplicative word problems: Elements of a descriptive theory, Journal for Research in Mathematics Education, 20, 434-449.
Brenner, M. E., Herman, S., Ho,Hsiu-Zo & Zimmer, J. M.(1999)Cross-national of representational competence, Journal for Research in Mathematics Education, 30, 541-547.
Bruner, J. S. (1966). Toward a theory of instruction. Cambridge, MA: Harvard Unerversity.
Clark, F. B. & Kamii, C.(1996). Identification of multiplicative thinking in children in grades 1-5. Journal for Research in Mathematics Education, 27, 41-51.
Cristou, C., & Philippou, G. (1998). The developmental nature of ability to solve one-step word problem. Journal for Research in Mathematics Education, 29, 436-442.
Dreyfus, T. (1991). Advanced mathematical thinking process. Advanced Mathematical Thinking. Netherlands: Kluwer Academic.
Dufour-Janvier, B., Bednarz, N. & Belanger, M. (1987). Pedagogical considerations concerning the problem of representation in teaching and learning of mathematics. In C. Janvier. (Eds.), Problem of representation in teaching and learning of mathematics (pp.109-122). Hillsdale, NJ : Erlbaum.
Duval, R. (2000). Basic issues for research in mathematics education. Proceedings of the 24th Conference of the International Group for the PME. 1, 55-69.
Ebel, R. L. & Frisbie, D. A. (1991). Essentials of educational measurement(5 th ed.). Englewood Cliffs, NJ: Prentice-Hall.
Fischbein, E., Nello, M. S. & Marino, M. S. (1985). The role of implicit models in solving verbal problems in multiplication and division, Journal for Research in Mathematics Education, 16, 3-17.
Greeno, J. G. & Hall, R. P. (1997). Practicing representation. Phi Delta Kappan. 78, 361-367.
Greer, B. (1992). Multiplication and division as models of situations. In D. A. Grouws (Ed.), Handbook of Research on Mathematics teaching and learning: A project of the National Council of Teachers of Mathematics. New York: MacMillan, 276-295.
Hart, K. M. (1981). Children's understanding of mathematics. London: John Murray Ltd.
Kaput, J. (1987). Representation systems and mathematics. In C. Janvier. (Eds.), Problem of representation in teaching and learning of mathematics (p. 19-26). Hillsdale, NJ : Erlbaum.
Kato, Kamii, Ozaki and Nagahiro (2002).Young children’s representations of groups of objects: The relationship between abstraction and representation. Journal for Research in Mathematics Education, 33, 30-46.
Lesh, R., Post, T. & Behr, M. (1987). Representations and translation among representation in mathematics learning and problem solving. In C. Janvier. (Eds.), Problem of representation in teaching and learning of mathematics (p.33-40). Hillsdale, NJ : Erlbaum.
Moreau, S. & Coquin-Viennot, D. (2003). Comprehension of arithmetic word problems by fifth-grade pupils: Representations and selection of information. British Journal of Educational Psychology, 73, 109-121.
National Council of Teachers of Mathematics. (1995). Assessment standards for school mathematics , Reston, Va: The Council.
National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics, Reston, Va: The Council.
Nesher, P. (1988). Multiplicative school word problem: Theoretical Approaches and empirical findings. In J. Hiebert & M.Behr (Eds.), Number concepts and operations in middle grades (pp.19-40). Hillsdale, NJ:Erlbaum.
Ozgun-Koca, S. A. (1998). Students’ use of representations in mathematics education. Proceedings of the 22nd International Conference for the Psychology of Mathematics Education.
Palmer, S. E. (1977). Fundamental aspects of cognitive representation. In E. Rosch & B. B. Lloyd (Eds.). Cognition and categorization. Hillsdale, NJ: Lawrence Erlbaum Associates.
Perry, J. A. & Atkins, S. L. (2002). It’ not just notation: Valuing children’s representations. Teaching Children Mathematics Education, 9, 196-201.
Riedesel, C. (1990). Multiplication of whole numbers. Teaching elementary school mathematics. New Jersey: Prentice-Hall, 175-203.
Schmidt, S. & Weiser, W. (1995). Semantic structures of one-step word problems involving multiplication or division. Educational studies in mathematics, 28, 55-72.
Schwartz, J. T. (1988). Intensive quantity and referent transforming arithmetic operations. In M. Behr & J. Hiebert (eds.), Number concepts and operations in the middle grades (pp. 41 - 52). Reston, VA: NCTM; NJ: Lawerence Erlbaum.
Vergnaud, G. (1988). Multiplicative structures. In M. Behr & J. Hiebert (eds.), Number concepts and operations in the middle grades (pp.141-161). Reston, VA: NCTM; NJ: Lawrence Erlbaum.
Xie, X. L. & Beni, G. (1991). A validity measure for fuzzy clustering. IEEE Transactions of Pattern Analysis and Machine Intelligence, 13, 841-847.