研究生: |
賴念筑 |
---|---|
論文名稱: |
中孔洞二氧化矽及其官能化金屬複合奈米結構於混合陽離子型非離子型界面活性劑稀釋溶液下的鹼性合成與其催化應用 Pure Silica, Organic Functionalized and Metal-Containing Mesoporous Nanostructures: Alkaline Synthesis in Dilute Solutions of Mixed Cationic & Nonionic Surfactants and Their Catalytic Applications |
指導教授: | 楊家銘 |
口試委員: |
洪嘉呈
鄭淑芬 林昇佃 陳敬勳 黃暄益 楊家銘 |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 171 |
中文關鍵詞: | 中孔洞材料 、官能化 、藥物釋放 、異相催化 、選擇性氧化反應 |
外文關鍵詞: | mesoporous materials, functionalization, drug delivery system, heterogeneous catalysis, selective oxidation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在利用動力學調控策略,於鹼性、稀釋濃度下,以混合陽離子型、非離子型界面活性劑,合成具有新穎結構與形貌的中 孔洞二氧化矽奈米顆粒及其功能化材料。並將之應用於藥物輸送與 異相催化等相關領域。
第一部份以陽離子型、非離子形界面活性劑的微胞堆積參數做調控。其中,利用苄基十六烷基二甲基氯化銨 (benzylcetyldimethylammonium chloride)以及二乙二醇單十六醚 (diethylene glycol hexadecyl ether),可ㄧ步驟合成出殼層兼具 Ia3d 結 構有序性以及近乎單層單位晶胞厚度的中孔洞空心二氧化矽奈米顆 粒。該新穎中孔洞材料,MMT-2,由於具有極高附載量與在緩衝液 中展現獨特、有效降解方式,非常適合應用於藥物輸送等相關生醫領域中。
第二部份則是將將此混合、稀釋界面活性劑之系統延伸至有機官能化二氧化矽材料的製備。其中,利用含氯烷官能基之有機矽烷前趨物,在特定合成條件下,可以製備得到兼具同軸心的螺旋、直 通型孔道之奈米纖維狀顆粒此一新穎中孔洞二氧化矽材料。並進一 步發現,該有機官能基的分布主要集中於纖維狀顆粒中央部位,亦即直通型孔道為主的孔道表面。利用此一特性製備而得的極短螺距(~3-5 nm)之螺旋白金-鈷合金奈米線、與具有相同直徑的直通型奈米線,在磁性的表現上展現了非常有趣且特別的差異(geometry- dependent magnetism)。也是文獻中首次可以利用硬模板,簡便且成 功製備連續、大量的白金-鈷合金奈米線,並且觀察到此一新穎物理現象。
第三部份則利用了 pH 值驟降法(pH-jump method)
成功開發了具有大量空穴、然而保有極高縮合程度的中孔洞二氧化矽奈米材料。此材料具備很高的比表面積、很好的質傳以及水熱穩定性,因此該材料預期很適合應用於異相催化觸媒的載體等相關應用。
第四部份則是利用前述 pH 值驟降法並且以氨錯離子作為前趨物,成功的以一步驟合成法開發了含過渡金屬之中孔洞二氧化矽材料。進一步鑑定分析發現,金屬物種極為分散的鑲嵌於孔洞表面,即使經過高溫煅燒、酸性萃取等後處理,仍能維持其分散性,沒有溶解、聚集等現象發生。該觸媒材料進一步應用於使用氧氣做為氧化劑的丙烯選擇性氧化反應上,展現了極好的催化效果。
(1) Linares, N.; Serrano, E.; Rico, M.; Mariana Balu, A.; Losada, E.; Luque, R.; Garcia-Martinez, J.: Incorporation of chemical functionalities in the framework of mesoporous silica. Chem. Commun. 2011, 47, 9024-9035.
(2) Taguchi, A.; Schüth, F.: Ordered mesoporous materials in catalysis. Micropor. Mesopor. Mater. 2005, 77, 1-45.
(3) Vivero-Escoto, J. L.; Slowing, I. I.; Trewyn, B. G.; Lin, V. S. Y.: Mesoporous silica nanoparticles for intracellular controlled drug delivery. Small 2010, 6, 1952-1967.
(4) Wu, S.-H.; Mou, C.-Y.; Lin, H.-P.: Synthesis of mesoporous silica nanoparticles. Chem. Soc. Rev. 2013, 42, 3862-3875.
(5) Ying, J. Y.; Mehnert, C. P.; Wong, M. S.: Synthesis and applications of supramolecular-templated mesoporous materials. Angew. Chem. Int. Ed. 1999, 38, 56-77.
(6) Schüth, F.; Sing, K.; Weitkamp, J.: An exhaustive treatment can be found in Handbook of Porous Solids; Wiley-VCH: Weinheim, 2002.
(7) Di Renzo, F.; Cambon, H.; Dutartre, R.: A 28-year-old synthesis of micelle-templated mesoporous silica. Micropor. Mater. 1997, 10, 283-286.
(8) Inagaki, S.; Fukushima, Y.; Kuroda, K.: Synthesis of highly ordered mesoporous materials from a layered polysilicate. J. Chem. Soc., Chem. Commun. 1993, 680-682.
(9) Inagaki, S.; Koiwai, A.; Suzuki, N.; Fukushima, Y.; Kuroda, K.: Syntheses of highly ordered mesoporous materials, FSM-16, derived from Kanemite. Bull. Chem. Soc. Japan 1996, 69, 1449-1457.
(10) Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.: A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 1992, 114, 10834-10843.
(11) Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S.: Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359, 710-712.
(12) Hoffmann, F.; Cornelius, M.; Morell, J.; Fröba, M.: Silica-based mesoporous organic-inorganic hybrid materials. Angew. Chem. Int. Ed. 2006, 45, 3216-3251.
(13) Lai, C.-Y.; Trewyn, B. G.; Jeftinija, D. M.; Jeftinija, K.; Xu, S.; Jeftinija, S.; Lin, V. S. Y.: A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J. Am. Chem. Soc. 2003, 125, 4451-4459.
(14) Brinker, C. J.; Scherer, G. W.: Sol-Gel Science. 1990.
(15) Lin, H.-P.; Mou, C.-Y.: Structural and morphological control of cationic surfactant-templated mesoporous silica. Acc. Chem. Res. 2002, 35, 927-935.
(16) Brinker, C. J.; Lu, Y.; Sellinger, A.; Fan, H.: Evaporation-induced self-assembly: nanostructures made easy. Adv. Mater. 1999, 11, 579-585.
(17) Huo, Q.; Margolese, D. I.; Stucky, G. D.: Surfactant control of phases in the synthesis of mesoporous silica-based materials. Chem. Mater. 1996, 8, 1147-1160.
(18) Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W.: Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc., Faraday Trans. 2: Mole. Chem. Phys. 1976, 72, 1525-1568.
(19) Qiu, H.; Sakamoto, Y.; Terasaki, O.; Che, S.: A 2D-rectangular p2gg silica mesoporous crystal with elliptical mesopores: an intermediate phase of chiral and lamellar mesostructures. Adv. Mater. 2008, 20, 425-429.
(20) Yang, C. M.; Lin, C. Y.; Sakamoto, Y.; Huang, W. C.; Chang, L. L.: 2D-rectangular c2mm mesoporous silica nanoparticles with tunable elliptical channels and lattice dimensions. Chem. Commun. 2008, 5969-5971.
(21) Zhao, D.; Huo, Q.; Feng, J.; Kim, J.; Han, Y.; Stucky, G. D.: Novel mesoporous silicates with two-dimensional mesostructure direction using rigid bolaform surfactants. Chem. Mater. 1999, 11, 2668-2672.
(22) Ciesla, U.; Schüth, F.: Ordered mesoporous materials. Micropor. Mesopor. Mater. 1999, 27, 131-149.
(23) Soler-Illia, G. J. d. A. A.; Sanchez, C. m.; Lebeau, B. n. d.; Patarin, J. l.: Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem. Rev. 2002, 102, 4093-4138.
(24) Ryoo, R.; Joo, S. H.; Kim, J. M.: Energetically favored formation of MCM-48 from cationic-neutral surfactant mixtures. J. Phys. Chem. B 1999, 103, 7435-7440.
(25) Suzuki, K.; Ikari, K.; Imai, H.: Synthesis of silica nanoparticles having a well-ordered mesostructure using a double surfactant system. J. Am. Chem. Soc. 2003, 126, 462-463.
(26) Huang, W.-C.; Chang, L.-L.; Sakamoto, Y.; Lin, C.-Y.; Lai, N.-C.; Yang, C.-M.: Kinetically controlled formation of helical mesoporous silica nanostructures correlated to a ribbon intermediate phase. Rsc Adv. 2011, 1, 229-237.
(27) Feng, X.; Fryxell, G. E.; Wang, L.-Q.; Kim, A. Y.; Liu, J.; Kemner, K. M.: Functionalized monolayers on ordered mesoporous supports. Science 1997, 276, 923-926.
(28) Davis, M. E.: Ordered porous materials for emerging applications. Nature 2002, 417, 813-821.
(29) Trewyn, B. G.; Giri, S.; Slowing, I. I.; Lin, V. S. Y.: Mesoporous silica nanoparticle based controlled release, drug delivery, and biosensor systems. Chem. Commun. 2007, 3236-3245.
(30) Yin; Liebscher, J. r.: Carbon-carbon coupling reactions catalyzed by heterogeneous palladium catalysts. Chem. Rev. 2006, 107, 133-173.
(31) Corma, A.; Fornes, V.; Navarro, M. T.; Perezpariente, J.: Acidity and stability of MCM-41 crystalline aluminosilicates. J. Catal. 1994, 148, 569-574.
(32) Yokoi, T.; Kubota, Y.; Tatsumi, T.: Amino-functionalized mesoporous silica as base catalyst and adsorbent. Appl. Catal. A: Gen. 2012, 421-422, 14-37.
(33) Kecht, J.; Schlossbauer, A.; Bein, T.: Selective functionalization of the outer and inner surfaces in mesoporous silica nanoparticles. Chem. Mater. 2008, 20, 7207-7214.
(34) Cauvel, A.; Brunel, D.; Di Renzo, F.; Garrone, E.; Fubini, B.: Hydrophobic and hydrophilic behavior of micelle-templated mesoporous silica. Langmuir 1997, 13, 2773-2778.
(35) de Juan, F.; Ruiz-Hitzky, E.: Selective functionalization of mesoporous silica. Adv. Mater. 2000, 12, 430-432.
(36) Lai, C.-H.; Lai, N.-C.; Chuang, Y.-J.; Chou, F.-I.; Yang, C.-M.; Lin, C.-C.: Trivalent galactosyl-functionalized mesoporous silica nanoparticles as a target-specific delivery system for boron neutron capture therapy. Nanoscale 2013, 5, 9412-9418.
(37) Bouchoucha, M.; C.-Gaudreault, R.; Fortin, M.-A.; Kleitz, F.: Mesoporous silica nanoparticles: selective surface functionalization for optimal relaxometric and drug loading performances. Adv. Funct. Mater. 2014, 24, 5911-5923.
(38) Grirrane, A.; Garcia, H.; Corma, A.: Supported palladium nanoparticles as heterogeneous ligand-free catalysts for the Hiyama C-C coupling of vinylsilanes and halobenzenes leading to styrenes. J. Catal. 2013, 302, 49-57.
(39) Huang, S.-H.; Liu, C.-H.; Yang, C.-M.: Efficient ligand-free Hiyama cross-coupling reaction catalyzed by functionalized SBA-15-supported Pd nanoparticles. Green Chem. 2014, 16, 2706-2712.
(40) Liu, C.-H.; Guan, Y.; Hensen, E. J. M.; Lee, J.-F.; Yang, C.-M.: Au/TiO2@SBA-15 nanocomposites as catalysts for direct propylene epoxidation with O2 and H2 mixtures. J. Catal. 2011, 282, 94-102.
(41) Liu, C.-H.; Lai, N.-C.; Liou, S.-C.; Chu, M.-W.; Chen, C.-H.; Yang, C.-M.: Deposition and thermal transformation of metal oxides in mesoporous SBA-15 silica with hydrophobic mesopores. Micropor. Mesopor. Mater. 2013, 179, 40-47.
(42) Lai, Y. T.; Chen, T. C.; Lan, Y. K.; Chen, B. S.; You, J. H.; Yang, C. M.; Lai, N. C.; Wu, J. H.; Chen, C. S.: Pt/SBA-15 as a highly efficient catalyst for catalytic toluene oxidation. ACS Catal. 2014, 4, 3824-3836.
(43) Yao, N.; Pinckney, C.; Lim, S.; Pak, C.; Haller, G. L.: Synthesis and characterization of Pt/MCM-41 catalysts. Micropor. Mesopor. Mater. 2001, 44-45, 377-384.
(44) Liu, C.-H.; Lai, N.-C.; Lee, J.-F.; Chen, C.-S.; Yang, C.-M.: SBA-15-supported highly dispersed copper catalysts: Vacuum-thermal preparation and catalytic studies in propylene partial oxidation to acrolein. J. Catal. 2014, 316, 231-239.
(45) Torchilin, V. P.: Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 2005, 4, 145-160.
(46) Malmsten, M.: Soft drug delivery systems. Soft Matter 2006, 2, 760-769.
(47) Chacko, R. T.; Ventura, J.; Zhuang, J.; Thayumanavan, S.: Polymer nanogels: A versatile nanoscopic drug delivery platform. Adv. Drug Deliv. Rev. 2012, 64, 836-851.
(48) Böttcher, H.; Slowik, P.; Süß, W.: Sol-gel carrier systems for controlled drug delivery. J. Sol-Gel Sci. Tech. 1998, 13, 277-281.
(49) Galarneau, A.; Nader, M.; Guenneau, F.; Di Renzo, F.; Gedeon, A.: Understanding the stability in water of mesoporous SBA-15 and MCM-41. J. Phys. Chem. C 2007, 111, 8268-8277.
(50) Barbé, C.; Bartlett, J.; Kong, L.; Finnie, K.; Lin, H. Q.; Larkin, M.; Calleja, S.; Bush, A.; Calleja, G.: Silica Particles: A novel drug-delivery system. Adv. Mater. 2004, 16, 1959-1966.
(51) Thomas, J. M.; Thomas, W. J.: Principles and practice of heterogeneous catalysis; Wiley-VCH: Weinheim, 1996.
(52) Bracey, C. L.; Carley, A. F.; Edwards, J. K.; Ellis, P. R.; Hutchings, G. J.: Understanding the effect of thermal treatments on the structure of CuAu/SiO2 catalysts and their performance in propene oxidation. Catal. Sci. & Tech. 2011, 1, 76-85.
(53) Bettahar, M. M.; Costentin, G.; Savary, L.; Lavalley, J. C.: On the partial oxidation of propane and propylene on mixed metal oxide catalysts. Appl. Catal. A: Gen. 1996, 145, 1-48.
(54) Adams, C. R.; Jennings, T. J.: Mechanism studies of the catalytic oxidation of propylene. J. Catal. 1964, 3, 549-558.
(55) Yu, J. S.; Kevan, L.: Effects of reoxidation and water vapor on selective partial oxidation of propylene to acrolein in copper(II)-exchanged X and Y zeolites. J. Phys. Chem. 1991, 95, 6648-6653.
(56) Yu, J. S.; Kevan, L.: Catalytic partial oxidation of propylene to acrolein over copper(II)-exchanged M-X and M-Y zeolites where M = Mg2+, Ca2+, Li+, Na+, K+, and H+: evidence for separate pathways for partial and complete oxidation. J. Phys. Chem. 1991, 95, 3262-3271.
(57) Vallet-Regi, M.; Rámila, A.; del Real, R. P.; Pérez-Pariente, J.: A new property of MCM-41: drug delivery system. Chem. Mater. 2000, 13, 308-311.
(58) Lu, J.; Liong, M.; Li, Z.; Zink, J. I.; Tamanoi, F.: Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small 2010, 6, 1794-1805.
(59) Lin, Y.-S.; Abadeer, N.; Haynes, C. L.: Stability of small mesoporous silica nanoparticles in biological media. Chem. Commun. 2011, 47, 532-534.
(60) Lin, Y.-S.; Abadeer, N.; Hurley, K. R.; Haynes, C. L.: Ultrastable, redispersible, small, and highly organomodified mesoporous silica nanotherapeutics. J. Am. Chem. Soc. 2011, 133, 20444-20457.
(61) Rosenholm, J. M.; Sahlgren, C.; Linden, M.: Multifunctional mesoporous silica nanoparticles for combined therapeutic, diagnostic and targeted action in cancer treatment. Curr. Drug Targ. 2011, 12, 1166-86.
(62) Argyo, C.; Weiss, V.; Bräuchle, C.; Bein, T.: Multifunctional mesoporous silica nanoparticles as a universal platform for drug delivery. Chem. Mater. 2013, 26, 435-451.
(63) Chen, Y.; Chen, H.; Shi, J.: In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv. Mater. 2013, 25, 3144-3176.
(64) Tarn, D.; Ashley, C. E.; Xue, M.; Carnes, E. C.; Zink, J. I.; Brinker, C. J.: Mesoporous silica nanoparticle nanocarriers: biofunctionality and biocompatibility. Acc. Chem. Res. 2013, 46, 792-801.
(65) Teng, I. T.; Chang, Y.-J.; Wang, L.-S.; Lu, H.-Y.; Wu, L.-C.; Yang, C.-M.; Chiu, C.-C.; Yang, C.-H.; Hsu, S.-L.; Ho, J.-a. A.: Phospholipid-functionalized mesoporous silica nanocarriers for selective photodynamic therapy of cancer. Biomaterials 2013, 34, 7462-7470.
(66) Coll, C.; Mondragón, L.; Martínez-Máñez, R.; Sancenón, F.; Marcos, M. D.; Soto, J.; Amorós, P.; Pérez-Payá, E.: Enzyme-mediated controlled release systems by anchoring peptide sequences on mesoporous silica supports. Angew. Chem. Int. Ed. 2011, 50, 2138-2140.
(67) Rosenholm, J. M.; Sahlgren, C.; Linden, M.: Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles-opportunities & challenges. Nanoscale 2010, 2, 1870-1883.
(68) Wang, L.-S.; Wu, L.-C.; Lu, S.-Y.; Chang, L.-L.; Teng, I. T.; Yang, C.-M.; Ho, J.-a. A.: Biofunctionalized phospholipid-capped mesoporous silica nanoshuttles for targeted drug delivery: improved water suspensibility and decreased nonspecific protein binding. ACS Nano 2010, 4, 4371-4379.
(69) Guillet-Nicolas, R.; Laprise-Pelletier, M.; Nair, M. M.; Chevallier, P.; Lagueux, J.; Gossuin, Y.; Laurent, S.; Kleitz, F.; Fortin, M.-A.: Manganese-impregnated mesoporous silica nanoparticles for signal enhancement in MRI cell labelling studies. Nanoscale 2013.
(70) Lin, W.-I.; Lin, C.-Y.; Lin, Y.-S.; Wu, S.-H.; Huang, Y.-R.; Hung, Y.; Chang, C.; Mou, C.-Y.: High payload Gd(iii) encapsulated in hollow silica nanospheres for high resolution magnetic resonance imaging. J. Mater. Chem. B 2013, 1, 639-645.
(71) Xiao, Q.; Zheng, X.; Bu, W.; Ge, W.; Zhang, S.; Chen, F.; Xing, H.; Ren, Q.; Fan, W.; Zhao, K.; Hua, Y.; Shi, J.: A core/satellite multifunctional nanotheranostic for in vivo imaging and tumor eradication by radiation/photothermal synergistic therapy. J. Am. Chem. Soc. 2013, 135, 13041-13048.
(72) Andersson, J.; Rosenholm, J.; Areva, S.; Lindén, M.: Influences of material characteristics on ibuprofen drug loading and release profiles from ordered micro- and mesoporous silica matrices. Chem. Mater. 2004, 16, 4160-4167.
(73) Cauda, V.; Schlossbauer, A.; Bein, T.: Bio-degradation study of colloidal mesoporous silica nanoparticles: Effect of surface functionalization with organo-silanes and poly(ethylene glycol). Micropor. Mesopor. Mater. 2010, 132, 60-71.
(74) He, Q.; Shi, J.; Zhu, M.; Chen, Y.; Chen, F.: The three-stage in vitro degradation behavior of mesoporous silica in simulated body fluid. Micropor. Mesopor. Mater. 2010, 131, 314-320.
(75) Yamada, H.; Urata, C.; Aoyama, Y.; Osada, S.; Yamauchi, Y.; Kuroda, K.: Preparation of colloidal mesoporous silica nanoparticles with different diameters and their unique degradation behavior in static aqueous systems. Chem. Mater. 2012, 24, 1462-1471.
(76) Lin, Y.-S.; Hurley, K. R.; Haynes, C. L.: Critical considerations in the biomedical use of mesoporous silica nanoparticles. J. Phys. Chem. Lett. 2012, 3, 364-374.
(77) Mamaeva, V.; Sahlgren, C.; Lindén, M.: Mesoporous silica nanoparticles in medicine-Recent advances. Adv. Drug Deliv. Rev. 2013, 65, 689-702.
(78) Lin, Y.-S.; Wu, S.-H.; Tseng, C.-T.; Hung, Y.; Chang, C.; Mou, C.-Y.: Synthesis of hollow silica nanospheres with a microemulsion as the template. Chem. Commun. 2009, 3542-3544.
(79) Li, J.; Liu, J.; Wang, D.; Guo, R.; Li, X.; Qi, W.: Interfacially controlled synthesis of hollow mesoporous silica spheres with radially oriented pore structures. Langmuir 2010, 26, 12267-12272.
(80) Yang, W.; Li, B.: Facile fabrication of hollow silica nanospheres and their hierarchical self-assemblies as drug delivery carriers through a new single-micelle-template approach. J. Mater. Chem. B 2013, 1, 2525-2532.
(81) Yang, W.; Li, B.: A novel liquid template corrosion approach for layered silica with various morphologies and different nanolayer thicknesses. Nanoscale 2014, 6, 2292-2298.
(82) Chen, D.; Jiang, M.: Strategies for constructing polymeric micelles and hollow spheres in solution via specific intermolecular interactions. Acc. Chem. Res. 2005, 38, 494-502.
(83) Hao, N.; Wang, H.; Webley, P. A.; Zhao, D.: Synthesis of uniform periodic mesoporous organosilica hollow spheres with large-pore size and efficient encapsulation capacity for toluene and the large biomolecule bovine serum albumin. Micropor. Mesopor. Mater. 2010, 132, 543-551.
(84) Mandal, M.; Kruk, M.: Family of single-micelle-templated organosilica hollow nanospheres and nanotubes synthesized through adjustment of organosilica/surfactant ratio. Chem. Mater. 2011, 24, 123-132.
(85) Qi, G.; Wang, Y.; Estevez, L.; Switzer, A. K.; Duan, X.; Yang, X.; Giannelis, E. P.: Facile and scalable synthesis of monodispersed spherical capsules with a mesoporous shell. Chem. Mater. 2010, 22, 2693-2695.
(86) Lou, X. W.; Archer, L. A.; Yang, Z.: Hollow micro-/nanostructures: synthesis and applications. Adv. Mater. 2008, 20, 3987-4019.
(87) Zhang, Q.; Wang, W.; Goebl, J.; Yin, Y.: Self-templated synthesis of hollow nanostructures. Nano Today 2009, 4, 494-507.
(88) Fang, X.; Chen, C.; Liu, Z.; Liu, P.; Zheng, N.: A cationic surfactant assisted selective etching strategy to hollow mesoporous silica spheres. Nanoscale 2011, 3, 1632-1639.
(89) Zhang, T.; Ge, J.; Hu, Y.; Zhang, Q.; Aloni, S.; Yin, Y.: Formation of hollow silica colloids through a spontaneous dissolution-regrowth process. Angew. Chem. Int. Ed. 2008, 47, 5806-5811.
(90) Chang, A.; Lai, N.-C.; Yang, C.-M.: MCM-48 nanorods: a self-assembled isotropic cubic mesostructure with anisotropic morphology. RSC Adv. 2012, 2, 12088-12090.
(91) Huang, W.-C.; Lai, N.-C.; Chang, L.-L.; Yang, C.-M.: Mercaptopropyl-functionalized helical mesoporous silica nanoparticles with c2mm symmetry: cocondensation synthesis and structural transformation in the dilute solution of mixed cationic and nonionic surfactants. Micropor. Mesopor. Mater. 2012, 151, 411-417.
(92) Alexader, G. B.: The effect of particle size on the solubility of amorphous silica in water. J. Phys. Chem. 1957, 61, 1563-1564.
(93) Huo, Q. S.; Margolese, D. I.; Stucky, G. D.: Surfactant control of phases in the synthesis of mesoporous silica-based materials. Chem. Mater. 1996, 8, 1147-1160.
(94) Higuchi, T.: Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J. Pharm. Sci. 1963, 52, 1145-1149.
(95) Charnay, C.; Bégu, S.; Tourné-Péteilh, C.; Nicole, L.; Lerner, D. A.; Devoisselle, J. M.: Inclusion of ibuprofen in mesoporous templated silica: drug loading and release property. Eur. J. Pharm. Biopharm. 2004, 57, 533-540.
(96) Dove, P. M.; Han, N.; Wallace, A. F.; De Yoreo, J. J.: Kinetics of amorphous silica dissolution and the paradox of the silica polymorphs. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 9903-9908.
(97) Wallace, A. F.; Gibbs, G. V.; Dove, P. M.: Influence of ion-associated water on the hydrolysis of Si-O bonded interactions. J. Phys. Chem. A 2010, 114, 2534-2542.
(98) Leemann, A.; Le Saout, G.; Winnefeld, F.; Rentsch, D.; Lothenbach, B.: Alkali-silica reaction: the influence of calcium on silica dissolution and the formation of Reaction Products. J. Am. Ceram. Soc. 2011, 94, 1243-1249.
(99) Huo, Q. S.; Zhao, D. Y.; Feng, J. L.; Weston, K.; Buratto, S. K.; Stucky, G. D.; Schacht, S.; Schüth, F.: Room temperature growth of mesoporous silica fibers: A new high-surface-area optical waveguide. Adv. Mater. 1997, 9, 974-978.
(100) Che, S.; Liu, Z.; Ohsuna, T.; Sakamoto, K.; Terasaki, O.; Tatsumi, T.: Synthesis and characterization of chiral mesoporous silica. Nature 2004, 429, 281-284.
(101) Snir, Y.; Kamien, R. D.: Entropically driven helix formation. Science 2005, 307, 1067-1067.
(102) Chouaieb, N.; Goriely, A.; Maddocks, J. H.: Helices. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 9398-9403.
(103) Yang, S.; Zhao, L. Z.; Yu, C. Z.; Zhou, X. F.; Tang, J. W.; Yuan, P.; Chen, D. Y.; Zhao, D. Y.: On the origin of helical mesostructures. J. Am. Chem. Soc. 2006, 128, 10460-10466.
(104) Meng, X. J.; Yokoi, T.; Lu, D. L.; Tatsumi, T.: Synthesis and characterization of chiral periodic mesoporous organosilicas. Angew. Chem. Int. Ed. 2007, 46, 7796-7798.
(105) Kamata, K.; Suzuki, S.; Ohtsuka, M.; Nakagawa, M.; Iyoda, T.; Yamada, A.: Fabrication of left-handed metal microcoil from spiral vessel of vascular plant. Adv. Mater. 2011, 23, 5509-5513.
(106) Wang, Y.; Xu, J.; Wang, Y.; Chen, H.: Emerging chirality in nanoscience. Chem. Soc. Rev. 2013, 42, 2930-2962.
(107) Ren, Z.; Gao, P.-X.: A review of helical nanostructures: growth theories, synthesis strategies and properties. Nanoscale 2014, 6, 9366-9400.
(108) Wu, Y.; Livneh, T.; Zhang, Y. X.; Cheng, G.; Wang, J.; Tang, J.; Moskovits, M.; Stucky, G. D.: Templated synthesis of highly ordered mesostructured nanowires and nanowire arrays. Nano Lett. 2004, 4, 2337-2342.
(109) Yamauchi, Y.; Takai, A.; Nagaura, T.; Inoue, S.; Kuroda, K.: Pt fibers with stacked donut-like mesospace by assembling Pt nanoparticles: guided deposition in physically confined self-assembly of surfactants. J. Am. Chem. Soc. 2008, 130, 5426-5427.
(110) Rambaud, F.; Vallé, K.; Thibaud, S.; Julián-López, B.; Sanchez, C.: One-pot synthesis of functional helicoidal hybrid organic-inorganic nanofibers with periodically organized mesoporosity. Adv. Funct. Mater. 2009, 19, 2896-2905.
(111) Xie, J.; Duan, Y.; Che, S.: Chirality of metal nanoparticles in chiral mesoporous silica. Adv. Funct. Mater. 2012, 22, 3784-3792.
(112) Motohiro, T.; Taga, Y.: Thin film retardation plate by oblique deposition. Appl. Opt. 1989, 28, 2466-2482.
(113) Kuzyk, A.; Schreiber, R.; Fan, Z.; Pardatscher, G.; Roller, E.-M.; Hogele, A.; Simmel, F. C.; Govorov, A. O.; Liedl, T.: DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 2012, 483, 311-314.
(114) Zhang, L.; Abbott, J. J.; Dong, L.; Peyer, K. E.; Kratochvil, B. E.; Zhang, H.; Bergeles, C.; Nelson, B. J.: Characterizing the swimming properties of artificial bacterial flagella. Nano Lett. 2009, 9, 3663-3667.
(115) Han, Y.; Zhao, L.; Ying, J. Y.: Entropy-driven helical mesostructure formation with achiral cationic surfactant templates. Adv. Mater. 2007, 19, 2454-2459.
(116) Yuan, P.; Zhao, L. Z.; Liu, N. A.; Wei, G. F.; Wang, Y. H.; Auchterlonie, G. J.; Drennan, J.; Lu, G. Q.; Zou, J.; Yu, C. Z.: Evolution of helical mesostructures. Chem. Eur. J. 2010, 16, 1629-1637.
(117) Tottori, S.; Zhang, L.; Qiu, F.; Krawczyk, K. K.; Franco-Obregón, A.; Nelson, B. J.: Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport. Adv. Mater. 2012, 24, 811-816.
(118) Wang, J.; Tsung, C.-K.; Hong, W.; Wu, Y.; Tang, J.; Stucky, G. D.: Synthesis of mesoporous silica nanofibers with controlled pore architectures. Chem. Mater. 2004, 16, 5169-5181.
(119) Wu, Y.; Cheng, G.; Katsov, K.; Sides, S. W.; Wang, J.; Tang, J.; Fredrickson, G. H.; Moskovits, M.; Stucky, G. D.: Composite mesostructures by nano-confinement. Nat. Mater. 2004, 3, 816-822.
(120) Platschek, B.; Petkov, N.; Bein, T.: Tuning the structure and orientation of hexagonally ordered mesoporous channels in anodic alumina membrane hosts: a 2D small-angle X-ray scattering study. Angew. Chem. Int. Ed. 2006, 45, 1134-1138.
(121) Lu, Q.; Gao, F.; Komarneni, S.; Mallouk, T. E.: Ordered SBA-15 nanorod arrays inside a porous alumina membrane. J. Am. Chem. Soc. 2004, 126, 8650-8651.
(122) Wang, D.; Kou, R.; Yang, Z.; He, J.; Yang, Z.; Lu, Y.: Hierachical mesoporous silica wires by confined assembly. Chem. Commun. 2005, 166-167.
(123) Platschek, B.; Köhn, R.; Döblinger, M.; Bein, T.: Formation mechanism of mesostructured silica in confined space: an in situ GISAXS study. ChemPhysChem 2008, 9, 2059-2067.
(124) Platschek, B.; Keilbach, A.; Bein, T.: Mesoporous structures confined in anodic alumina membranes. Adv. Mater. 2011, 23, 2395-2412.
(125) Chen, P.-K.; Lai, N.-C.; Ho, C.-H.; Hu, Y.-W.; Lee, J.-F.; Yang, C.-M.: New synthesis of MCM-48 nanospheres and facile replication to mesoporous platinum nanospheres as highly active electrocatalysts for the oxygen reduction reaction. Chem. Mater. 2013, 25, 4269-4277.
(126) Li, S.-S.; Chang, C.-P.; Lin, C.-C.; Lin, Y.-Y.; Chang, C.-H.; Yang, J.-R.; Chu, M.-W.; Chen, C.-W.: Interplay of three-dimensional morphologies and photocarrier dynamics of polymer/TiO2 bulk heterojunction solar cells. J. Am. Chem. Soc. 2011, 133, 11614-11620.
(127) Entel, P.; Gruner, M. E.: Large-scale ab initio simulations of binary transition metal clusters for storage media materials. J. Phys.: Conden. Matter. 2009, 21, 064228.
(128) Chen, C. H.; Higgins, A. K.; Strnat, R. M.: Effect of geometry on magnetization distortion in closed-circuit magnetic measurements. J. Magnet. Magnet. Mater. 2008, 320, L84-L87.
(129) Merazzo, K. J.; Leitao, D. C.; Jimenez, E.; Araujo, J. P.; Camarero, J.; Real, R. P. d.; Asenjo, A.; Vazquez, M.: Geometry-dependent magnetization reversal mechanism in ordered Py antidot arrays. J. Phys. D: Appl. Phys. 2011, 44, 505001.
(130) Kronmuller, H.; Parkin, S.: Handbook of Magnetism and Advanced Magnetic Materials, 2007.
(131) Chiruta, D.; Linares, J.; Miyashita, S.; Boukheddaden, K.: Role of open boundary conditions on the hysteretic behaviour of one-dimensional spin crossover nanoparticles. J. Appl. Phys. 2014, 115, 194309.
(132) Huo, Q. S.; Zhao, D. Y.; Feng, J. L.; Weston, K.; Buratto, S. K.; Stucky, G. D.; Schacht, S.; Schuth, F.: Room temperature growth of mesoporous silica fibers: A new high-surface-area optical waveguide. Adv. Mater. 1997, 9, 974-978.
(133) Wang, B.; Chi, C.; Shan, W.; Zhang, Y. H.; Ren, N.; Yang, W. L.; Tang, Y.: Chiral mesostructured silica nanofibers of MCM-41. Angew. Chem. Int. Ed. 2006, 45, 2088-2090.
(134) Yang, S.; Zhao, L.; Yu, C.; Zhou, X.; Tang, J.; Yuan, P.; Chen, D.; Zhao, D.: On the origin of helical mesostructures. J. Am. Chem. Soc. 2006, 128, 10460-10466.
(135) Lin, G.-L.; Tsai, Y.-H.; Lin, H.-P.; Tang, C.-Y.; Lin, C.-Y.: Synthesis of mesoporous silica helical fibers using a catanionic-neutral ternary surfactant in a highly dilute silica solution: Biomimetic silicification. Langmuir 2007, 23, 4115-4119.
(136) Yang, C.-M.; Lin, C.-Y.; Sakamoto, Y.; Huang, W.-C.; Chang, L.-L.: 2D-Rectangular c2mm mesoporous silica nanoparticles with tunable elliptical channels and lattice dimensions. Chem. Commun. 2008, 5969-5971.
(137) Yuan, P.; Zhao, L.; Liu, N.; Wei, G.; Wang, Y.; Auchterlonie, G. J.; Drennan, J.; Lu, G. Q.; Zou, J.; Yu, C.: Evolution of helical mesostructures. Chem. Eur. J. 2010, 16, 1629-1637.
(138) Zhao, D. Y.; Huo, Q. S.; Feng, J. L.; Kim, J. M.; Han, Y. J.; Stucky, G. D.: Novel mesoporous silicates with two-dimensional mesostructure direction using rigid bolaform surfactants. Chem. Mater. 1999, 11, 2668-2672.
(139) Qiu, H. B.; Sakamoto, Y.; Terasaki, O.; Che, S. N.: A 2D-rectangular p2gg silica mesoporous crystal with elliptical mesopores: An intermediate phase of chiral and lamellar mesostructures. Adv. Mater. 2008, 20, 425-429.
(140) Han, Y.; Zhang, D.; Chng, L. L.; Sun, J.; Zhao, L.; Zou, X.; Ying, J. Y.: A tri-continuous mesoporous material with a silica pore wall following a hexagonal minimal surface. Nat. Chem. 2009, 1, 123-127.
(141) Husson, F.; Mustacchi, H.; Luzzati, V.: La structure des colloides dassociation. II. Description des phase liquide-cristallines de plusieurs systems amphiphile-eau-Amphiphiles anioniques, cationiques, non-ioniques. Acta Crystallographica 1960, 13, 668-677.
(142) Hagslatt, H.; Soderman, O.; Jonsson, B.: The structure of intermediate ribbon phases in surfactant systems. Liq. Cryst. 1992, 12, 667-688.
(143) Gustafsson, S.; Quist, P. O.; Halle, B.: Molecular segregation and aggregate shape in a lyotropic rectangular phase. Liq. Cryst. 1995, 18, 545-553.
(144) Soler-illia, G. J. D.; Sanchez, C.; Lebeau, B.; Patarin, J.: Chemical strategies to design textured materials: From microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem. Rev. 2002, 102, 4093-4138.
(145) Hoffmann, F.; Cornelius, M.; Morell, J.; Froeba, M.: Silica-based mesoporous organic-inorganic hybrid materials. Angew. Chem. Int. Ed. 2006, 45, 3216-3251.
(146) Trewyn, B. G.; Slowing, I. I.; Giri, S.; Chen, H.-T.; Lin, V. S. Y.: Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol-gel process and applications in controlled release. Acc. Chem. Res. 2007, 40, 846-853.
(147) Kimura, T.; Kuroda, K.: Ordered mesoporous silica derived from layered silicates. Adv. Funct. Mater. 2009, 19, 511-527.
(148) Yang, C. M.; Sheu, H. S.; Chao, K. J.: Templated synthesis and structural study of densely packed metal nanostructures in MCM-41 and MCM-48. Adv. Funct. Mater. 2002, 12, 143-148.
(149) Kidder, M. K.; Britt, P. F.; Chaffee, A. L.; Buchanan, A. C., III: Confinement effects on product selectivity in the pyrolysis of phenethyl phenyl ether in mesoporous silica. Chem. Commun. 2007, 52-54.
(150) Dabestani, R.; Kidder, M.; Buchanan, A. C., III: Pore size effect on the dynamics of excimer formation for chemically attached pyrene on various silica surfaces. J. Phys. Chem. C 2008, 112, 11468-11475.
(151) Martin, I.; Morpurgo, A. F.: Majorana fermions in superconducting helical magnets. Phys. Rev. B 2012, 85, 144505.
(152) Grigoriev, S.; Potapova, N.; Siegfried, S. A.; Dyadkin, V.; Moskvin, E.; Dmitriev, V.; Menzel, D.; Dewhurst, C.; Chernyshov, D.; Sadykov, R.; Fomicheva, L.; Tsvyashchenko, A.: Chiral properties of structures and magnetism in Mn1-xFexGe compounds: When the left and the right are fighting, Who wins?. Phys. Rev. Lett. 2013, 110, 207201.
(153) Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L.: A new family of mesoporous molecular-sieves prepared with liquid-crystal templates. J. Am. Chem. Soc. 1992, 114, 10834-10843.
(154) Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S.: Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359, 710-712.
(155) Huo, Q. S.; Margolese, D. I.; Ciesla, U.; Feng, P. Y.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schüth, F.; Stucky, G. D.: Generalized synthesis of periodic surfactant inorganic composite-materials. Nature 1994, 368, 317-321.
(156) Yang, S. M.; Yang, H.; Coombs, N.; Sokolov, I.; Kresge, C. T.; Ozin, G. A.: Morphokinetics: Growth of mesoporous silica curved shapes. Adv. Mater. 1999, 11, 52-55.
(157) Yang, C.-M.; Lin, H.-A.; Zibrowius, B.; Spliethoff, B.; Schüth, F.; Liou, S.-C.; Chu, M.-W.; Chen, C.-H.: Selective surface functionalization and metal deposition in the micropores of mesoporous silica SBA-15. Chem. Mater. 2007, 19, 3205-3211.
(158) Lin, H.-A.; Liu, C.-H.; Huang, W.-C.; Liou, S.-C.; Chu, M.-W.; Chen, C.-H.; Lee, J.-F.; Yang, C.-M.: Novel magnetically separable mesoporous Fe2O3@SBA-15 nanocomposite with fully open mesochannels for protein immobilization. Chem. Mater. 2008, 20, 6617-6622.
(159) Chen, B. C.; Lin, H. P.; Chao, M. C.; Mou, C. Y.; Tang, C. Y.: Mesoporous silica platelets with perpendicular nanochannels via a ternary surfactant system. Adv. Mater. 2004, 16, 1657-1661.
(160) Sujandi; Prasetyanto, E. A.; Park, S.-E.: Synthesis of short-channeled amino-functionalized SBA-15 and its beneficial applications in base-catalyzed reactions. Appl. Catal. A: Gen. 2008, 350, 244-251.
(161) Chen, S.-Y.; Huang, C.-Y.; Yokoi, T.; Tang, C.-Y.; Huang, S.-J.; Lee, J.-J.; Chan, J. C. C.; Tatsumi, T.; Cheng, S.: Synthesis and catalytic activity of amino-functionalized SBA-15 materials with controllable channel lengths and amino loadings. J. Mater. Chem. 2012, 22, 2233-2243.
(162) Lin, H. P.; Wong, S. T.; Mou, C. Y.; Tang, C. Y.: Extensive void defects in mesoporous aluminosilicate MCM-41. J. Phys. Chem. B 2000, 104, 8967-8975.
(163) Yuan, Z. Y.; Blin, J. L.; Su, B. L.: Design of bimodal mesoporous silicas with interconnected pore systems by ammonia post-hydrothermal treatment in the mild-temperature range. Chem. Commun. 2002, 504-505.
(164) Zheng, J. L.; Zhai, S. R.; Zhang, Y.; Wu, D.; Sun, Y. H.; Yang, Y. X.; Chen, L.; Deng, F.: Hydrothermally stable MCM-41 analogue with extensive embedded voids. Catalysis Today 2004, 93-5, 529-534.
(165) Hsu, Y.-C.; Hsu, Y.-T.; Hsu, H.-Y.; Yang, C.-M.: Facile synthesis of mesoporous silica SBA-15 with additional intra-particle porosities. Chem. Mater. 2007, 19, 1120-1126.
(166) Bernal, C.; Mesa, M.; Jaber, M.; Guth, J. L.; Sierra, L.: Contribution to the understanding of the formation mechanism of bimodal mesoporous MCM41-type silica with large defect cavities. Micropor. Mesopor. Mater. 2012, 153, 217-226.
(167) Drisko, G. L.; Zelcer, A.; Caruso, R. A.; Soler-Illia, G. J. d. A. A.: One-pot synthesis of silica monoliths with hierarchically porous structure. Micropor. Mesopor. Mater. 2012, 148, 137-144.
(168) Moon, D.-S.; Lee, J.-K.: Tunable synthesis of hierarchical mesoporous silica nanoparticles with radial wrinkle structure. Langmuir 2012, 28, 12341-12347.
(169) Drossman, H.; Johnson, H.; Mill, T.: Structure activity relationships for environmental processes 1: Hydrolysis of esters and carbamates. Chemosphere 1988, 17, 1509-1530.
(170) Avrami, M.: Kinetics of phase change I - General theory. J. Chem. Phys. 1939, 7, 1103-1112.
(171) Avrami, M.: Kinetics of phase change II - Transformation-time relations for random distribution of nuclei. J. Chem. Phys. 1940, 8, 212-224.
(172) Avrami, M.: Granulation, phase change, and microstructure-kinetics of phase change. III. J. Chem. Phys. 1941, 9, 177-184.
(173) Erofe’ev, B. V.: C. R. Dokl. Acad. Sci. URSS 1946, 52, 511-517.
(174) Ertl, G.; Knozinger, H.; Schuth, F.; Weitkamp, J.: Handbook of Heterogeneous Catalysis; Wiley-VCH: Weinheim, 2008.
(175) Reitz, J. B.; Solomon, E. I.: Propylene oxidation on copper oxide surfaces: electronic and geometric contributions to reactivity and selectivity. J. Am. Chem. Soc. 1998, 120, 11467-11478.
(176) Vaughan, O. P. H.; Kyriakou, G.; Macleod, N.; Tikhov, M.; Lambert, R. M.: Copper as a selective catalyst for the epoxidation of propene. J. Catal. 2005, 236, 401-404.
(177) Chu, H.; Yang, L. j.; Zhang, Q.; Wang, Y.: Copper-catalyzed propylene epoxidation by molecular oxygen: Superior catalytic performances of halogen-free K+-modified CuOx/SBA-15. J. Catal. 2006, 241, 225-228.
(178) Su, W.; Wang, S.; Ying, P.; Feng, Z.; Li, C.: A molecular insight into propylene epoxidation on Cu/SiO2 catalysts using O2 as oxidant. J. Catal. 2009, 268, 165-174.
(179) Tuysuz, H.; Galilea, J.; Schuth, F.: Highly diluted copper in a silica matrix as active catalyst for propylene oxidation to acrolein. Catal Lett 2009, 131, 49-53.
(180) Duzenli, D.; Seker, E.; Senkan, S.; Onal, I.: Epoxidation of propene by high-throughput screening method over combinatorially prepared Cu catalysts supported on high and low surface area silica. Catal Lett 2012, 142, 1234-1243.
(181) Zhai, Z.; Getsoian, A. B.; Bell, A. T.: The kinetics of selective
oxidation of propene on bismuth vanadium molybdenum oxide
catalysts. J. Catal. 2013, 308, 25-36.
(182) Centi, G.; Perathoner, S.: Nature of active species in copper-based
catalysts and their chemistry of transformation of nitrogen oxides.
Appl. Catal. A: Gen. 1995, 132, 179-259.
(183) Zhu, W.; Wang, L.; Liu, S.; Wang, Z.: Characterization and catalytic
behavior of silica-supported copper catalysts prepared by
impregnation and ion-exchange methods. React Kinet Catal Lett
2008, 93, 93-99.
(184) Kristiansen, T.; Mathisen, K.; Einarsrud, M.-A.; Bjorgen, M.;
Nicholson, D. G.: Single-site copper by incorporation in ambient
pressure dried silica aerogel and xerogel systems: An X-ray
absorption spectroscopy study. J. Phys. Chem. C 2011, 115,
19260-19268.
(185) Schulz-Ekloff, G.; Rathousky, J.; Zukal, A.: Mesoporous silica with
controlled porous structure and regular morphology. Inter. J. Inorg.
Mater. 1999, 1, 97-102.
(186) Monti, D. A. M.; Baiker, A.: Temperature-programmed reduction.
Parametric sensitivity and estimation of kinetic parameters. J. Catal.
1983, 83, 323-335.
(187) Malet, P.; Caballero, A.: The selection of experimental conditions in
temperature-programmed reduction experiments. J. Chem. Soc.,
Faraday Trans. 1: Phys. Chem. Conden. Phases 1988, 84, 2369-
2375.
(188) Van Der Grift, C. J. G.; Wielers, A. F. H.; Jogh, B. P. J.; Van Beunum,
J.; De Boer, M.; Versluijs-Helder, M.; Geus, J. W.: Effect of the
reduction treatment on the structure and reactivity of silica-
supported copper particles. J. Catal. 1991, 131, 178-189.
(189) Sato, S.; Takahashi, R.; Sodesawa, T.; Yuma, K.-i.; Obata, Y.:
Distinction between surface and bulk oxidation of Cu through N2O
decomposition. J. Catal. 2000, 196, 195-199.
(190) Chen, C.-S.; Chen, C.-C.; Chen, C.-T.; Kao, H.-M.: Synthesis of Cu
nanoparticles in mesoporous silica SBA-15 functionalized with
carboxylic acid groups. Chem. Commun. 2011, 47, 2288-2290.
(191) Chen, C. S.; Lai, Y. T.; Lai, T. W.; Wu, J. H.; Chen, C. H.; Lee, J. F.;
Kao, H. M.: Formation of Cu nanoparticles in SBA-15 functionalized
with carboxylic acid groups and their application in the water-gas
shift reaction. ACS Catal. 2013, 3, 667-677.
(192) Lai, N.-C.; Lin, C.-J.; Huang, W.-C.; Yang, C.-M.: ''pH-jump''
synthesis of 2D-rectangular c2mm mesoporous silica materials
with helical morphology and extensive void defects. Micropor.
Mesopor. Mater. 2014, 190, 67-73.
(193) Van Der Grift, C. J. G.; Mulder, A.; Geus, J. W.: Characterization of
silica-supported copper catalysts by means of temperature-
programmed reduction. Appl. Catal. 1990, 60, 181-192.
(194) Toupance, T.; Kermarec, M.; Louis, C.: Metal particle size in silica-
supported copper catalysts. Influence of the conditions of
preparation and of thermal pretreatments. J. Phys. Chem. B 2000,
104, 965-972.
(195) Munnik, P.; Wolters, M.; Gabrielsson, A.; Pollington, S. D.;
Headdock, G.; Bitter, J. H.; de Jongh, P. E.; de Jong, K. P.: Copper
nitrate redispersion to arrive at highly active silica-supported
copper catalysts. J. Phys. Chem. C 2011, 115, 14698-14706.
(196) Sano, M.; Komorita, S.; Yamatera, H.: XANES spectra of copper(II)
complexes: correlation of the intensity of the 1s .fwdarw. 3d
transition and the shape of the complex. Inorg. Chem. 1992, 31,
459-463.
(197) Nilsson, K. B.; Eriksson, L.; Kessler, V. G.; Persson, I.: The
coordination chemistry of the copper(II), zinc(II) and cadmium(II)
ions in liquid and aqueous ammonia solution, and the crystal
structures of hexaamminecopper(II) perchlorate and chloride, and
hexaamminecadmium(II)chloride. J. Mole. Liq. 2007, 131-132, 113-
120.
(198) Komatsu, T.; Nunokawa, M.; Moon, I. S.; Takahara, T.; Namba, S.;
Yashima, T.: Kinetic studies of reduction of nitric oxide with
ammonia on Cu2+-exchanged zeolites. J. Catal. 1994, 148, 427-
437.
(199) Kustrowski, P.; Chmielarz, L.; Dziembaj, R.; Cool, P.; Vansant, E. F.:
Modification of MCM-48-, SBA-15-, MCF-, and MSU-type
mesoporous silicas with transition metal oxides using the molecular
designed dispersion method. J. Phys. Chem. B 2005, 109, 11552-
11558.
(200) Zhang, G.; Long, J.; Wang, X.; Zhang, Z.; Dai, W.; Liu, P.; Li, Z.; Wu,
L.; Fu, X.: Catalytic role of Cu sites of Cu/MCM-41 in phenol
hydroxylation. Langmuir 2009, 26, 1362-1371.
(201) Ramakrishna Prasad, M.; Kamalakar, G.; Kulkarni, S. J.; Raghavan, K.
V.: Synthesis of binaphthols over mesoporous molecular sieves. J.
Mole. Catal. A: Chem. 2002, 180, 109-123.
(202) Tu, C.-H.; Wang, A.-Q.; Zheng, M.-Y.; Wang, X.-D.; Zhang, T.:
Factors influencing the catalytic activity of SBA-15-supported
copper nanoparticles in CO oxidation. Appl. Catal. A: Gen. 2006,
297, 40-47.
(203) Chen, L.-F.; Guo, P.-J.; Zhu, L.-J.; Qiao, M.-H.; Shen, W.; Xu, H.-L.;
Fan, K.-N.: Preparation of Cu/SBA-15 catalysts by different
methods for the hydrogenolysis of dimethyl maleate to 1,4-
butanediol. Appl. Catal. A: Gen. 2009, 356, 129-136.
(204) Yin, Y.; Jiang, W.-J.; Liu, X.-Q.; Li, Y.-H.; Sun, L.-B.: Dispersion of
copper species in a confined space and their application in
thiophene capture. J. Mater. Chem. 2012, 22, 18514-18521.
(205) Jentys, A.: Estimation of mean size and shape of small metal
particles by EXAFS. Phys. Chem. Chem. Phys. 1999, 1, 4059-4063.
(206) Lee, S.-H.; Her, Y.-S.; Matijević, E.: Preparation and growth
mechanism of uniform colloidal copper oxide by the controlled
double-jet precipitation. J. Colloid Interf. Sci. 1997, 186, 193-202.
(207) Ko, C. K.; Lee, W. G.: Effects of pH variation in aqueous solutions on
dissolution of copper oxide. Surf. Interf. Anal. 2010, 42, 1128-
1130.
(208) Shimokawabe, M.; Takezawa, N.; Kobayashi, H.: Characterization of
copper-silica catalysts prepared by ion exchange. Appl. Catal.
1982, 2, 379-387.