研究生: |
傅安教 |
---|---|
論文名稱: |
研討鋅擴散及其應用於量子井異質結構 成分混和之影響 Study of Zn diffusion and its application for compositional mixing in quantum well heterostructures |
指導教授: |
謝光前
吳孟奇 |
口試委員: |
謝光前
吳孟奇 何充隆 李峰旻 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 76 |
中文關鍵詞: | 鋅擴散 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要探討鋅擴散對砷化鎵/砷化鋁鎵結構發生impurity induce layer disordering(IILD)現象的影響。我們利用封管技術製作出砷化鋅(ZnAs2)合成物當作擴散源,並且利用電漿輔助化學氣相沉積法沉積氮化矽,藉由可調變的製程參數將氮化矽的折射率調變到接近Si3N4 的 2~2.05,利用氮化矽折射率在此範圍下結構緻密的特性來當作擴散的阻擋層,阻擋鋅擴散和 IILD 的現象發生。並在鋅擴散後,可以完整維持結構晶格的品質。
我們利用封管技術做所有的鋅擴散實驗,一開始先針對砷化鎵單層結構做不同溫度和時間的鋅擴散,在考慮到控制擴散深度的情形下,從中選取600℃作為擴散溫度。接著對不同鋁含量的砷化鋁鎵單層結構和砷化鎵/砷化鋁鎵結構做鋅擴散的研究。在PL量測下,我們成功地在600℃擴散條件下,使砷化鎵/砷化鋁鎵結構發生impurity induce layer disordering(IILD)及成分均質化的現象,並且有效地藉由控制擴散時間達成不同的混和程度。
In this study, we used the sealed-quartz-ampoules to produce ZnAs2 as our diffusion source to perform Zn diffusion, and optimized the deposition process by varying parameters to deposit silicon nitride films and adjust the refractive indices to be in the range of 2.0 to 2.05, utilizing its characteristics of having a denser and less permeable structure than SiO2 to inhibit the Zn diffusion and IILD.
We used sealed quartz ampoules to do all diffusion experiments. At first, we did the Zn diffusion into n+GaAs (Si doped~1018cm-3) substrates with ZnAs2 as the diffusion source at different diffusion temperatures for various times. Among three temperatures, we chose 600℃ to perform our Zn diffusion studies for different Al contents of AlxGa1-xAl (~2um) layer on GaAs substrate and Al1-xGaxAs / GaAs structures. We have demonstrated layer disordering in two Al1-xGaxAs/GaAs structures, Sample A and B. The disordering was induced by Zn diffusion with ZnAs2 as the diffusion source. The PL data show that we can effectively control the extent of disordering by varying the diffusion time at 600℃. Moreover, we can use a SiNx as diffusion mask to effectively inhibit Zn diffusion to preserve the crystal "quality" and keep the active layer during Zn diffusion as sharp as the as-grown one.
[1] B. GQLDsTEIN, ‘‘Diffusion in Compound Semiconductors,’’ Physical Review, 121, 1305 (1961).
[2] D.G. Deppe, N. Holonyak, Jr, ‘‘atom diffusion and impurity‐induced layer disordering in quantum well Ⅲ-V semiconductor heterostructures,’’ J. Appl. Phys. 64(12), 15 December (1988).
[3] L. L. Chang, A. Koma, ‘‘Interdiffusion between GaAs and AlAs,’’ Appl. Phys. Lett. 29, 138 (1976).
[4] W. D. Laidig, N. Holonyak, M. D. Camras, K. Hess, J. J. Coleman et al, ‘‘Disorder of an AlAs GaAs superlattice by impurity diffusion,’’ Appl. Phys. Lett. 38, 776 (1981).
[5] N. Holonyak, Jr., W. D. Laidig, and M. D. Camras, ‘‘IR-redGaAs-AIAs superlattice laser monolithically integrated in a yellow-gap cavity,’’ Appl. Phys. Lett. 39, 102 (1981).
[6] L. J. Guido, N. Holonyak, K. C. Hsieh, R. W. Kaliski, W. E. Plano et al, ‘‘Effects of dielectric encapsulation and As overpressure on Al Ga
interdiffusion in AlxGa1−x As-GaAs quantumwell heterostructures,’’ J. Appl. Phys. 61, 1372 (1987).
[7] L. J. Guido, J. S. Major, J. E. Baker, W. E. Plano, N. Holonyak et al, ‘‘ Column III vacancy and impurityinduced layer disordering of AlxGa1-xAs GaAs heterostructures with SiO2 or Si3N4 diffusion sources, ’’ J. Appl. Phys. 67, 6813 (1990).
[8] D. G. Deppe, L. J. Guido, N. Ho~onyak, Jr., and K. C. Hsieh, ‘‘Stripe-geometry quantum wen heterostructure AlxGa1−x As-GaAs lasers defined by defect diffusion,’’ Appl. Phys. Lett. 49, 510 (1986).
[9] K.Hamada, H.Naito, M.Kume, M.Yuri and H.Shimizu, “High—power GaA1As single-element lasers with nonabsorbing mirrors,” Proc. SPIE, vol. 1219, pp. 117-125, 1990.
[10] P. Gavrilovic, K. Meehan, L. J. Guido, and N. Holonyak, Jr, ‘‘Si-implanted and disordered stripe-geometry AlXGa1-xAs-GaAs quantum well lasers,’’ Appl. Phys. Lett. 47, 903 (1985).
[11] J. S. Major, L. J. Guido, K. C. Hsieh, N. Holonyak, W. Stutius et al, ‘‘Low-threshold disorder-defined buried heterostructure strained-layer
AlyGa1−yAs-GaAs-InxGa1−xAs quantum well lasers (λ910 nm),’’ Appl. Phys. Lett. 54, 913 (1989).
[12] D. G. Deppe, G. S. Jackson, N. Holonyak, R. D. Burnham, and R. L. Thornton, ‘‘Coupled stripe AlxGa1−xAs‐GaAs quantum well lasers defined by impurity‐induced (Si) layer disordering,’’ Appl. Phys. Lett. 50, 632 (1987).
[13] J. S. Major, D. C. Hall, L. J. Guido, N. Holonyak, P. Gavrilovic et al, ‘‘High-power disorderdefined coupled stripe AlyGa1−yAs-GaAs-InxGa1−xAs quantum well heterostructure lasers,’’ Appl. Phys. Lett. 55, 271 (1989).
[14] K. K. Shih, ‘‘High Surface Concentration Zn Diffusion in GaAs,’’
J. Electrochem. Soc. 1976, Volume 123, Issue 11, Pages 1737-1740.
[15] BY V. J. LYONS, ‘‘THE DISSOCIATION PRESSURE OF ZnAs2,’’
International Business Machines Corporation, Research Laboratory, Poughkeepsie, NEW York, Received December 11, 1958.
[16] G. A. Silvey, V. J. Lyons and V. J. Silvestri, ‘‘The Preparation and Properties of Some II – V Semiconducting Compounds,’’ J. Electrochem. Soc. 1961, Volume 108, Issue 7, Pages 653-658.
[17] Steven R. Styer and Lee F. Donaghey, ‘‘VAPOR PRESSURES OF Zn AND As DURING CLOSED-SYSTEM Zn DIFFUSION INTO GaAs FROM A ZnAs2 SOURCE,’’ Mat. Res. Bull. Vol. I0, pp. IZ97-1304, 1975.
[18] S Sudhakar, V Ganesh, Indra Sulania, Pawan K Kulriya and
K Baskar, ‘‘Liquid phase epitaxial growth of II–V semiconductor compound Zn3As2,’’ J. Phys. D: Appl. Phys. 40 (2007) 5071–5074.
[19] G. N. Parsons, J. H. Souk, and J. Batey, ‘‘Low hydrogen content stoichiometric silicon nitride films deposited by plasma-enhanced chemical vapor deposition,’’ J. Appl. Phys. 70, 1553 (1991).
[20] K. R. LEE, K. B. SUNDARAM, D. C. MALOCHA, ‘‘Deposition parameters studies of silicon nitride films prepared by plasma-enhanced CVD process using silane-ammonia,’’ JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS 4 (1993) 283-287.
[21] A Stoffel, A Kov´acs, W Kronast and B M¨ ‘‘uller LPCVD against PECVD for micromechanical applications,’’ J. Micromech. Microeng. 6 (1996) 1–13. Printed in the UK.
[22] Chuan Jie Zhonga, Hiroaki Tanakab, Shigetoshi Sugawab, Tadahiro Ohmib, ‘‘High quality silicon nitride deposited by Ar/N2/H2/SiH4 high-density and low energy plasma at low temperature,’’ Microelectronics Journal 37 (2006) 44–49.
[23] Haiping Dun, Paihung Pan, Francis R. White, and Richard W. Douse, ‘‘Mechanisms of Plasma-Enhanced Silicon Nitride Deposition Using SiH4/N2 Mixture,’’ J. Electrochem. Soc.1981 volume 128,issue 7, 1555-1563.
[24] http://refractiveindex.info/?group=CRYSTALS&material=Si3N4
[25] James D.Plummer, Michael D.Deal, Peter B.Griffin, ‘‘Silicon VLSI Technology Fundamentals, Practice and Modeling,’’ by Prentic Hall, Inc. Upper saddle River, New Jersey 07458, p528, (2000).
[26] http://www.itrc.narl.org.tw/Publication/Newsletter/no80/p12.php
[27] A. El Amrani, A. Bekhtari, B. Mahmoudi, A. Lefgoum, H. Menari, ‘‘Experimental study of the effect of process parameters on plasma-enhanced chemical vapour deposition of silicon nitride film,’’ Vacuum 86 (2011) 386e390
[28] Jiashen Wei, Poh Lam Ong, Francis E.H. Tay, Ciprian Iliescu, ‘‘A new fabrication method of low stress PECVD SiNx layers for biomedical applications,’’ Thin Solid Films 516 (2008) 5181–5188.
[29] J. R. Manning. ‘‘Diffusion Kinetics for Atoms in Crystal.’’ Van Nostrand Princeton, pp.95, 166 (1968).
[30] T. Y. Tan and U. Gosele, “Mechanisms of doping-enhanced superlattice disordering and of gallium self-diffusion in GaAs, ’’ Appl. Phys. Lett. 52, 1240 (1988).
[31] U. Gösele and F. Morehead, ‘‘Diffusion of zinc in gallium arsenide: A new model.’’ J. Appl. Phys. 52, 4617 (1981).
[32] L. Pavesi, D. Araujo, J. D. Ganiere, “Zinc diffusion in GaAs and zinc-induced disordering of GaAs/AlGaAs multiple quantum wells : a multitechnique study.” Optical and Quantum Electronics 23 (1991) S789-S804.
[33] Y-R Yuan, Kazuo Eda, G. Allen Vawter, and James L. Merz, “Open tube diffusion of Zn into AIGaAs and GaAs.” J. Appl. Phys. 54, 6044 (1983).
[34] D. Heiman, “ Photoluminescence Spectroscopy. ” Physics U600, Adv Lab I – Physics of Waves and Optics, Northeastern University, 6/1/2004.
[35] http://www.batop.de/information/Eg_AlGaAs.html