研究生: |
黃逸平 Huang, I Ping |
---|---|
論文名稱: |
應用於無人飛行器無線通訊之系統設計與效能評估 Wireless Communication System Design and Evaluation for Unmanned Aircraft Systems |
指導教授: |
馬席彬
Ma, Hsi Pin |
口試委員: |
黃元豪
翁詠祿 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2015 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 66 |
中文關鍵詞: | 通訊系統 、正交多頻分工 |
外文關鍵詞: | Communication system, OFDM |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近來,無論是在軍事領域或是民間,無人飛行器系統的應用越來越受到歡迎,如搜救、即時監控、偵查行動、交通監控以及危險區域之探勘等。
本論文的主要目的為設計一個是用於無人飛行器的通訊系統,目標為一個翼展6公尺之中型大小的無人飛機,其應用為在飛機行駛同時,將其拍攝之影像即時傳送到地面的基地台。飛機之最大時速為200公里,且需支援的最大距離為100公里,以及所需的資料傳輸速率需達每秒4百萬位元。首先,我們定義了航空通道模型與鏈路預算之分析。然後,我們呈現了一個基於正交多頻分工之通訊系統的設計流程,此系統能夠有效對抗都普勒頻率,以飛機最大時速200公里為計算達277.8赫茲,以及支援長距離100公里的傳輸。此正交多頻分工系統有512個子載波,其間距為15.6 千赫茲,且有密集分布之領航碼與達時間長度16 微秒之循環前置區段,因而能在時散與頻散之通道有良好效能。所提出的收發機架構由一根傳送天線與二根接收天線所組成,以使用最大比率合成,並且採用里德所羅門碼以及迴旋碼,以增進效能表現。時間與頻率之同步的設計也包含於此論文。最後,在使用頻寬8百萬赫茲和傳輸功率20瓦的情況下,達到了目標所需的資料傳輸速率,且能夠有約5.25分貝的系統增益。
Nowadays, unmanned aircraft systems (UAS) are becoming popular and find their places not only in military applications but also civilian ones. For example, they can be used in the search and rescue, real-time surveillance, reconnaissance operations, traffic monitoring, hazardous site inspection, range extension, and even agriculture field.
In this thesis, we aim to design a communication system for UAS. The target vehicle is a median unmanned aircraft with a wingspan of 6 m and the application is that the aircraft transmits the video filmed by the equipped camera to the ground station during the flight within a distance of 100 km. The maximum cruise speed is 200 km per hour and a data rate of 4 Mbps is required for the quality of the video. First, we define aeronautical channel models and analyze the link budget. Then, an OFDM based communication design process is presented, featuring robustness against Doppler frequency which is 277.8 Hz at the maximum speed 200 km/h of the aircraft and transmission in a long distance within 100 km. The OFDM system with the FFT size of 512 has a large subcarrier spacing 15.6 kHz and with the dense arrangement of pilots and the long duration of the cyclic prefix 16 μs, the system is robust in doubly dispersive channels. The proposed transceiver has one transmit antenna and two receive antennas which are used to perform maximal ratio combining. A concatenation of Reed Solomon (255, 239) codes and 1/2-rate convolutional codes is adopted to further enhance performance. Timing and frequency synchronization are also included. The required data rate is achieved in a bandwidth of 8 MHz, and the system margin is about 5.25 dB when a transmit power of 20 W is applied.
[1] W. Yufeng, M.C. Erturk, H. Arslan, R. Sankar, “Throughput analysis in Aeronautical Data Networks,” IEEE Wireless and Microwave Technology Conference, pp. 1-5, Apr. 2011.
[2] “Nasa projects web site,” NASA, ACAST. [Online]. Available: http://acast.grc.nasa.gov/main/projects/
[3] “Newsky project,” EU, Newsky Project, 2008, 21271.
[4] J. Lai, “Broadband wireless communication systems provided by commercial air-planes,” U.S. Patent 6285878, Sept. 4, 2001.
[5] A. Sakhaee, E.; Jamalipour, “The global in-flight internet,” IEEE Journal on Sel. Ar-eas in Commun., vol. 24, pp. 1748–1757, Sept. 2006.
[6] D. Medina, F. Hoffman, S. Ayaz, and C. H. Rokitansky, “Feasibility of an aeronau-tical mobile ad hoc network over the north atlantic corridor,” in Proc. IEEE Sensor, Mesh and Ad Hoc Commun. and Net. (SECON),June 2008, pp. 109–116.
[7] Deutsches Zentrum f¨ur Luft und Raumfahrt (DLR), Expected B-AMC System Performance, Doc. ref. CIEA15EN506.11, 2007.
[8] Deutsches Zentrum f¨ur Luft und Raumfahrt (DLR), Updated LDACS1 System Specification, Doc. ref. EWA04-1-T2-D1, 2011.
[9] S. Brandes, U. Epple, S. Gligorevic, M. Schnell, B. Haindl, and M. Sajatovic, 2009, “Physical Layer Specification of the L-Band Digital Aeronautical Communications System (L-DACS1),” IEEE Integrated Communications, Navigation and Surveil-lance Conference (ICNS'09), pp. 1-12.
[10] D.W. Matolak, “Air-ground channels & models: Comprehensive review and consid-erations for unmanned aircraft systems,” IEEE Aerospace Conference, pp. 1-17, Mar. 2012.
[11] Suraj G. Gupta, Mangesh M. Ghonge, Dr. P. M. Jawandhiya, “Review of Unmanned Aircraft System,” International Journal of Advanced Research in Computer Engi-neering & Technology (IJARCET), vol. 2, no. 4, pp 1646-1658, Apr. 2013.
[12] S. Stansbury, Manan A. Vyas, Timothy A. Wilson Richard, “A Survey of UAS Tech-nologies for Command, Control, and Communication (C3),” Journal of Intelligent and Robotic Systems, Volume 54, Springer Science + Business Media B.V. 2008
[13] K. Takizawa, T. Kagawa, S. Lin, F. Ono, “C-band aircraft-to-ground (A2G) radio channel measurement for unmanned aircraft systems,” International Symposium on Wireless Personal Multimedia Communications (WPMC), pp 754-758, Sept. 2014.
[14] K. Takizawa, F. Ono, M. Suzuki, H. Tsuji , “Measurement on S-band radio propaga-tion characteristics for unmanned aircraft systems,” 2014 8th European Conference on Antennas and Propagation (EuCAP), pp 3068-3072, Apr. 2014.
[15] ITU-R, “Characteristics of unmanned aircraft systems and spectrum requirements to support their safe operation in non-segregated airspace,” Report ITU-R .2171, Dec. 2009.
[16] J. G. Proakis, Digital Communications, 3rd edition, New York: McGraw Hill, 1995.
[17] W. C. Jakes, Ed., Microwave Mobile Communications, New York: Wiley, 1974.
[18] P. Hoeher, “A statistical discrete-time model for the WSSUS multipath channel,” IEEE Transactions on Vehicular Technology, vol. 41, no. 4, pp 461-468, Nov. 1992.
[19] P.A. Bello, “Characterization of Randomly Time-Variant Linear Channels,” IEEE Transactions on Communications, pp. 366–393, Dec. 1963.
[20] R. F. W. Coates, G. J. Janacek, and K. V. Lever, “Monte Carlo Simulation and ran-dom number generation,” IEEE Journal on Selected Areas in Communications, vol. 6, no.1, pp. 58-66, Jan. 1988.
[21] P. A. Bello, “Aeronautical channel characterization,” IEEE Transaction on Commu-nications, vol. 21, no. 5, pp. 548–563, May 1973.
[22] J. Painter, S. C. Gupta, and L. R. Wilson, “Multipath modeling for aeronautical communications,” IEEE Transaction on Communications, vol. 21, no. 5, pp.658–662, May 1973.
[23] A. Neul et al., “Propagation measurements for the aeronautical satellite channel,” IEEE Vehicular Technology Conference, vol. 37, pp. 90–97, June 1987.
[24] E. Haas, “Design, Evaluation and Implementation of a Multi-Carrier Transmission System for Aeronautical Communications,” Herbert Utz Verlag GmbH, Munich, 2002.
[25] E. Haas, “Aeronautical channel modeling,” IEEE Transactions on Vehicular Tech-nology, vol. 51, no. 2, pp.254 -264, Mar. 2002
[26] M. Hirschbeck, U.Berold, Johannes B. Huber, “Low Complexity Iterative Channel Estimation for the L-band Digital Aeronautical Communication System 1 based on OFDM,” IEEE Proceedings of 18th International OFDM Workshop 2014, pp. 1-8, Aug. 2014.
[27] D. N. C. Tse and P. Viswanath, Fundamentals of Wireless Communications, 2005 :Cambridge Univ. Press
[28] J. Heiskala and J.Terry, OFDM Wireless LANs: A Theoretical and Practical Guide. Sams, Dec.2001.
[29] N. Nyirongo, W.Q. Malik, D.1. Edwards, “Concatenated RS-Convolutional Codes for Ultrawideband Multiband-OFDM,” IEEE International Conference on Ul-tra-Wideband, pp.137, 142, 24-27 Sept. 2006.
[30] K. Takizawa, “Performance evaluation on path diversity in radio links between un-manned aerial vehicles,” IEEE 24th Annual International Symposium on personal, Indoor, and Mobile Radio Communications, pp.111-116, Sept. 2013.
[31] S. Ohno, Emmanuel Manasseh and M. Nakamoto, “Preamble and pilot symbol de-sign for channel estimation in OFDM systems with null subcarriers,” EURASIP Journal on Wireless Communications and Networking 2011, pp.1-17.
[32] P. Rudol, “Increasing Autonomy of Unmanned Aircraft Systems Through the Use of Imaging Sensors,” Department of Computer and Information science Link, opings universitet SE-581 83, Sweden 2011
[33] T. D. Chiueh, P. Y. Tsai, I. W. Lai, Baseband Receiver Design for Wireless MIMO-OFDM Communications, 2nd Edition, 2009 :Wiley.
[34] Unmanned Aircraft Systems Study Group (UASSG), “Command and Control (C2) link pro-vision, link certification and requirement for Annex 10 SARPs (brainstorm-ing),” ICAO, Tech.Rep. UASSG/10-SN No. 6, September 2012.
[35] D.W. Matolak, “Unmanned aerial vehicles: Communications challenges and future aerial networking,” 2015 International Conference on Computing, Networking and Communications (ICNC), pp. 567-572, Feb. 2015.