研究生: |
邱威超 Chiu, Wei-Chao |
---|---|
論文名稱: |
Subwavelength Silicon-Wire Photonics 次波長矽線波導光學 |
指導教授: |
李明昌
Lee, Ming-Chang M. |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 110 |
中文關鍵詞: | hydrogen annealing 、integrated optics 、multimode inteference 、micro-electro-mechanical systems 、silicon photonics 、silicon-on-insulator |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
A new technology using hydrogen annealing and thermal oxidation is introduced to make subwavelength photonic wires as well as to achieve three-dimensional photonic integration on a silicon-on-insulator (SOI) substrate.
Due to the hydrogen-annealing-induced profile transformation, the silicon wire with very smooth sidewall is accomplished, showing the propagation loss as low as 1.26 dB/cm. Moreover, a tapered beam spot-size converter is developed and monolithically integrated with subwavelength silicon wires. Owing to the low on-chip optical loss, nonlinear optical processes such as four-wave mixing, Raman emission and amplification, and anti-Stokes Raman conversion are observed at the pump power around just tens of milliwatts.
To achieve large-scale integration of photonic circuits, waveguide couplers are essential to device integration and functioning. Thus a very compact two-dimensional multimode interference coupler with dual-layer silicon photonic wires is demonstrated for the first time using the similar fabrication technology. Two devices, a 1×1 cross power coupler and a 1×4 power splitter, are presented and characterized. The experimental result shows a 1.1-nm 3-dB transmission bandwidth, and on-chip coupling losses of 8.6 dB and 2.84 dB with respect to the 1×1 cross coupler and 1×4 splitter. This work shows the possibility to realize photonic integrated circuits in three dimensions on a silicon-on-insulator (SOI) substrate.
For realizing active functions such as optical switch, signal modulation and attenuation on photonic circuits via the interference-type devices, it is important to control optical phase without amplitude dependency. However, it is challenging to be accomplished by using the conventional p-i-n or pn phase modulators based on the plasma dispersion effect due to the strong free-carrier absorption. A deformable silicon wire actuated by micro-electro-mechanical-systems (MEMS) offers an efficient way to control optical phase without causing much amplitude variation. By mechanically stretching the waveguide physical length, a 0.1-pi phase shift could be achieved via actuation of a single actuator at 240 V. The amplitude variation during the mechanical actuation is measured to be within 0.063 dB for both TE- and TM-polarized waves. To the authors’ best knowledge, this is the first time that a waveguide phase modulator decoupling from amplitude variation has been realized based on MEMS and silicon photonic technologies.
[1] M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, "Nonlinear optics in photonic nanowires," Optics Express, vol. 16, pp. 1300-1320, Jan 2008.
[2] R. Dekker, N. Usechak, M. Forst, and A. Driessen, "Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides," Journal of Physics D-Applied Physics, vol. 40, pp. R249-R271, Jul 2007.
[3] L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature, vol. 426, pp. 816-819, Dec 2003.
[4] S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. S. J. Russell, and M. W. Mason, "Supercontinuum generation in submicron fibre waveguides," Optics Express, vol. 12, pp. 2864-2869, Jun 2004.
[5] T. Tsuchizawa, K. Yamada, T. Watanabe, H. Fukuda, H. Nishi, H. Shinojima, and S. Itabashi, "Spot-size converters for rib-type silicon photonic wire waveguides," in 2008 5th IEEE International Conference on Group Iv Photonics, 2008, pp. 200-202.
[6] Y. Vlasov and S. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt. Express, vol. 12, pp. 1622-1631, 2004.
[7] T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE Journal of Selected Topics in Quantum Electronics, vol. 11, pp. 232-240, Jan-Feb 2005.
[8] A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, "Tailored anomalous group-velocity dispersion in silicon channel waveguides," Optics Express, vol. 14, pp. 4357-4362, May 2006.
[9] S. J. McNab, N. Moll, and Y. A. Vlasov, "Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides," Optics Express, vol. 11, pp. 2927-2939, Nov 2003.
[10] W. Freude, J. M. Brosi, C. Koos, P. Vorreau, L. C. Andreani, P. Dumon, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, and J. Leuthold, "Silicon-organic hybrid (SOH) devices for nonlinear optical signal processing," in 2008 10th Anniversary International Conference on Transparent Optical Networks, New York, 2008, pp. 84-87.
[11] J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, "Silicon organic hybrid technology - a platform for practical nonlinear optics," Proceedings of the IEEE, vol. 97, pp. 1304-1316, Jul 2009.
[12] M. C. M. Lee, W. C. Chiu, T. M. Yang, and C. H. Chen, "Monolithically integrated low-loss silicon photonic wires and three-dimensional tapered couplers fabricated by self-profile transformation," Applied Physics Letters, vol. 91, Nov 2007.
[13] M. C. M. Lee, W. C. Chiu, T. M. Yang, C. H. Chen, and M. C. Wu, "Low-loss silicon wire waveguides with 3-D tapered couplers fabricated by self-profile transformation," in Conference on Lasers and Electro-Optics Baltimore, MD, USA, 2007.
[14] C. Grillet, C. Smith, D. Freeman, S. Madden, B. Luther-Davis, E. C. Magi, D. J. Moss, and B. J. Eggleton, "Efficient coupling to chalcogenide glass photonic crystal waveguides via silica optical fiber nanowires," Optics Express, vol. 14, pp. 1070-1078, Feb 2006.
[15] Y. L. Ruan, W. T. Li, R. Jarvis, N. Madsen, A. Rode, and B. Luther-Davies, "Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching," Optics Express, vol. 12, pp. 5140-5145, Oct 2004.
[16] G. A. Siviloglou, S. Suntsov, R. El-Ganainy, R. Iwanow, G. I. Stegeman, D. N. Christodoulides, R. Morandotti, D. Modotto, A. Locatelli, C. De Angelis, F. Pozzi, C. R. Stanley, and M. Sorel, "Enhanced third-order nonlinear effects in optical AlGaAs nanowires," Optics Express, vol. 14, pp. 9377-9384, Oct 2006.
[17] J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, "Photonic-wire laser," Physical Review Letters, vol. 75, pp. 2678-2681, Oct 1995.
[18] M. Soljacic and J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nature Materials, vol. 3, pp. 211-219, Apr 2004.
[19] R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, "All-optical regeneration on a silicon chip," Optics Express, vol. 15, pp. 7802-7809, Jun 2007.
[20] J. Leuthold, C. Koos, and W. Freude, "Nonlinear silicon photonics," Nature Photonics, vol. 4, pp. 535-544, Aug 2010.
[21] M. C. M. Lee and M. C. Wu, "Tunable coupling regimes of silicon microdisk resonators using MEMS actuators," Optics Express, vol. 14, pp. 4703-4712, May 2006.
[22] T. Kato, Y. Suetsugu, and M. Nishimura, "Estimation of nonlinear refractive index in various silica-based glasses for optical fibers," Optics Letters, vol. 20, pp. 2279-2281, Nov 1995.
[23] H. K. Tsang and Y. Liu, "Nonlinear optical properties of silicon waveguides," Semiconductor Science and Technology, vol. 23, p. 9, Jun 2008.
[24] J. S. Aitchison, "All-optical switching using AlGaAs waveguide devices at 1.55 μm," in IEE Colloquium on Ultra-Short Optical Pulses, 1993, pp. 8/1-8/5.
[25] M. S. Alam, M. S. Rahman, M. R. Islam, A. G. Bhuiyan, and M. Yamada, "Refractive Index, absorption coefficient, and photoelastic constant: key parameters of InGaAs material relevant to InGaAs-based device performance," in 2007 IEEE 19th International Conference on Indium Phosphide & Related Materials, 2007, pp. 343-346.
[26] D. A. B. Miller, "Device Requirements for Optical Interconnects to Silicon Chips," Proceedings of the IEEE, vol. 97, pp. 1166-1185, Jul 2009.
[27] K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, "Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model," Applied Physics Letters, vol. 77, pp. 1617-1619, Sep 2000.
[28] K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, "Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction," Optics Letters, vol. 26, pp. 1888-1890, Dec 2001.
[29] T. Morosawa, K. Saito, Y. Takeda, T. Kunioka, A. Shimizu, J. Kato, T. Matsuda, Y. Kuriyama, Y. Nakayama, and Y. Matsui, "EB-X3: New electron-beam x-ray mask writer," Journal of Vacuum Science & Technology B, vol. 17, pp. 2907-2911, Nov-Dec 1999.
[30] C. Takahashi, Y. Jin, K. Nishimura, and S. Matsuo, "Anisotropic etching of Si and WSiN using ECR plasma of SF6-CF4 gas mixture," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 39, pp. 3672-3676, Jun 2000.
[31] M. C. M. Lee and M. C. Wu, "Thermal annealing in hydrogen for 3-D profile transformation on silicon-on-insulator and sidewall roughness reduction," Journal of Microelectromechanical Systems, vol. 15, pp. 338-343, Apr 2006.
[32] J. I. Dadap, R. L. Espinola, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, "Spontaneous Raman scattering in ultrasmall silicon waveguides," Optics Letters, vol. 29, pp. 2755-2757, Dec 2004.
[33] D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, "Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides," Applied Physics Letters, vol. 86, Feb 2005.
[34] D. Taillaert, P. Bienstman, and R. Baets, "Compact efficient broadband grating coupler for silicon-on-insulator waveguides," Opt. Lett., vol. 29, pp. 2749-2751, 2004.
[35] R. Gunther, S. Jonathan, T. Dries Van, and B. Roel, "High efficiency fiber-to-waveguide grating couplers in silicon-on-insulator waveguide structures," in Integrated Photonics and Nanophotonics Research and Applications, 2007, p. IMC2.
[36] N. Sato and T. Yonehara, "Hydrogen annealed silicon-on-insulator," Applied Physics Letters, vol. 65, pp. 1924-1926, Oct 1994.
[37] J. Nara, T. Sasaki, and T. Ohno, "Adsorption and diffusion of Si atoms on the H-terminated Si(001) surface: Si migration assisted by H mobility," Physical Review Letters, vol. 79, pp. 4421-4424, Dec 1997.
[38] W. W. Mullins, "Theory of thermal grooving," Journal of Applied Physics, vol. 28, pp. 333-339, 1957.
[39] K. Sudoh, H. Iwasaki, H. Kuribayashi, R. Hiruta, and R. Shimizu, "Numerical study on shape transformation of silicon trenches by high-temperature hydrogen annealing," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 43, pp. 5937-5941, Sep 2004.
[40] M. C. M. Lee, W. C. Chiu, T. M. Yang, C. H. Chen, C. Y. Lu, and G. R. Lin, "Fabrication of low-loss silicon photonic wires by self-profile transformation and applications in three-dimensional photonic integration and nonlinear optics," IEEE Journal of Quantum Electronics, vol. 46, pp. 650-657, May 2010.
[41] T. Sato, K. Mitsutake, I. Mizushima, and Y. Tsunashima, "Micro-structure transformation of silicon: A newly developed transformation technology for patterning silicon surfaces using the surface migration of silicon atoms by hydrogen annealing," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 39, pp. 5033-5038, Sep 2000.
[42] H. H. Yang, C. K. Chao, M. K. Wei, and C. P. Lin, "High fill-factor microlens array mold insert fabrication using a thermal reflow process," Journal of Micromechanics and Microengineering, vol. 14, pp. 1197-1204, Aug 2004.
[43] S. Asvadurov, B. D. Coleman, R. S. Falk, and M. Moakher, "Similarity solutions in the theory of curvature driven diffusion along planar curves: I. Symmetric curves expanding in time," Physica D, vol. 121, pp. 263-274, Oct 1998.
[44] S. T. Liu, L. Chan, and J. O. Borland, "Reaction kinetics of SiO2/Si(100) interface in H2 ambient in a reduced pressure epitaxial reactor," Journal of the Electrochemical Society, vol. 134, pp. C480-C480, Aug 1987.
[45] W. H. Juan and S. W. Pang, "Controlling sidewall smoothness for micromachined Si mirrors and lenses," Journal of Vacuum Science & Technology B, vol. 14, pp. 4080-4084, Nov-Dec 1996.
[46] M. Borselli, T. Johnson, and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," Opt. Express, vol. 13, pp. 1515-1530, 2005.
[47] L.-W. Luo, G. S. Wiederhecker, J. Cardenas, C. Poitras, and M. Lipson, "High quality factor etchless silicon photonic ring resonators," Opt. Express, vol. 19, pp. 6284-6289, 2011.
[48] G. T. Reed and C. E. Jason Png, "Silicon optical modulators," Materials Today, vol. 8, pp. 40-50, 2005.
[49] V. R. Almeida, Q. F. Xu, and M. Lipson, "Ultrafast integrated semiconductor optical modulator based on the plasma-dispersion effect," Optics Letters, vol. 30, pp. 2403-2405, Sep 2005.
[50] M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature, vol. 441, pp. 960-963, Jun 2006.
[51] KoosC, VorreauP, VallaitisT, DumonP, BogaertsW, BaetsR, EsembesonB, BiaggioI, MichinobuT, DiederichF, FreudeW, and LeutholdJ, "All-optical high-speed signal processing with silicon-organic hybrid slot waveguides," Nat Photon, vol. 3, pp. 216-219, 2009.
[52] L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. Keil, and T. Franck, "High speed silicon Mach-Zehnder modulator," Opt. Express, vol. 13, pp. 3129-3135, 2005.
[53] S. Manipatruni, X. Qianfan, B. Schmidt, J. Shakya, and M. Lipson, "High Speed Carrier Injection 18 Gb/s Silicon Micro-ring Electro-optic Modulator," in Lasers and Electro-Optics Society, 2007. LEOS 2007. The 20th Annual Meeting of the IEEE, 2007, pp. 537-538.
[54] L. Liao, A. Liu, J. Basak, H. Nguyen, M. Paniccia, D. Rubin, Y. Chetrit, R. Cohen, and N. Izhaky, "40 Gbit/s silicon optical modulator for highspeed applications," Electronics Letters, vol. 43, 2007.
[55] O. Boyraz and B. Jalali, "Demonstration of a silicon Raman laser," Opt. Express, vol. 12, pp. 5269-5273, 2004.
[56] H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature, vol. 433, pp. 725-728, 2005.
[57] L. Ansheng, R. Haisheng, R. Jones, O. Cohen, D. Hak, and M. Paniccia, "Optical amplification and lasing by stimulated Raman scattering in silicon waveguides," Lightwave Technology, Journal of, vol. 24, pp. 1440-1455, 2006.
[58] R. W. Boyd, "Nonlinear Optics," 3rd ed: Academic Press, 2008.
[59] H. Rong, Y.-H. Kuo, A. Liu, M. Paniccia, and O. Cohen, "High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides," Opt. Express, vol. 14, pp. 1182-1188, 2006.
[60] V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, "Parametric Raman wavelength conversion in scaled silicon waveguides," Lightwave Technology, Journal of, vol. 23, pp. 2094-2102, 2005.
[61] D. Van Thourhout, C. R. Doerr, C. H. Joyner, and J. L. Pleumeekers, "Observation of WDM crosstalk in passive semiconductor waveguides," Photonics Technology Letters, IEEE, vol. 13, pp. 457-459, 2001.
[62] R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, "Influence of nonlinear absorption on Raman amplification in Silicon waveguides," Opt. Express, vol. 12, pp. 2774-2780, 2004.
[63] R. Soref and B. Bennett, "Electrooptical effects in silicon," Quantum Electronics, IEEE Journal of, vol. 23, pp. 123-129, 1987.
[64] M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, "Broad-band continuous-wave parametric wavelength conversion insilicon nanowaveguides," Opt. Express, vol. 15, pp. 12949-12958, 2007.
[65] Y.-H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, "Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides," Opt. Express, vol. 14, pp. 11721-11726, 2006.
[66] G. P. Agrawal, "Nonlinear fiber optics ", 4th ed: Academic Press, 2007.
[67] H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J.-i. Takahashi, and S.-i. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express, vol. 13, pp. 4629-4637, 2005.
[68] A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, "Tailored anomalous group-velocity dispersion in silicon channel waveguides," Opt. Express, vol. 14, pp. 4357-4362, 2006.
[69] B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, "Raman-based silicon photonics," Selected Topics in Quantum Electronics, IEEE Journal of, vol. 12, pp. 412-421, 2006.
[70] R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, "Observation of Raman emission in silicon waveguides at 1.54 µm," Opt. Express, vol. 10, pp. 1305-1313, 2002.
[71] R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, "Observation of stimulated Raman amplification in silicon waveguides," Opt. Express, vol. 11, pp. 1731-1739, 2003.
[72] R. Espinola, J. Dadap, J. R. Osgood, S. McNab, and Y. Vlasov, "Raman amplification in ultrasmall silicon-on-insulator wire waveguides," Opt. Express, vol. 12, pp. 3713-3718, 2004.
[73] L. B. Soldano and E. C. M. Pennings, "Optical multi-mode interference devices based on self-imaging: principles and applications," Journal of Lightwave Technology, vol. 13, pp. 615-627, Apr 1995.
[74] C. H. Bae and F. Koyama, "Fabrication and characterization of hollow waveguide optical switch with variable air core," Optics Express, vol. 13, pp. 3259-3263, May 2005.
[75] X. L. Jia, S. Q. Luo, and X. H. Cheng, "Design and optimization of novel ultra-compact SOI multimode interference optical switch," Optics Communications, vol. 281, pp. 1003-1007, Mar 2008.
[76] S. L. Tsao, H. C. Guo, and C. W. Tsai, "A novel 1 x 2 single-mode 1300/1550 nm wavelength division multiplexer with output facet-tilted MMI waveguide," Optics Communications, vol. 232, pp. 371-379, Mar 2004.
[77] D. Khalil and A. Yehia, "Two-dimensional multimode interference in integrated optical structures," Journal of Optics A: Pure and Applied Optics, vol. 6, pp. 137-145, Jan 2004.
[78] H. Chen and D. T. K. Tong, "Two-dimensional symmetric multimode interferences in silicon square waveguides," IEEE Photonics Technology Letters, vol. 17, pp. 801-803, Apr 2005.
[79] A. Yehia, K. Madkour, H. Maaty, and D. Khalil, "Multiple-imaging in 2-D MMI silicon hollow waveguides," IEEE Photonics Technology Letters, vol. 16, pp. 2072-2074, Sep 2004.
[80] R. Bernini, E. De Nuccio, A. Minardo, L. Zeni, and P. M. Sarro, "2-D MMI devices based on integrated hollow ARROW waveguides," IEEE Journal of Selected Topics in Quantum Electronics, vol. 13, pp. 194-201, Mar-Apr 2007.
[81] M. Raburn, B. Liu, K. Rauscher, Y. Okuno, N. Dagli, and J. E. Bowers, "3-D photonic circuit technology," IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, pp. 935-942, Jul-Aug 2002.
[82] M. Will, J. Burghoff, S. Nolte, and A. Tuennermann, "Fabrication of three-dimensional photonics devices using femtosecond laser pulses," in Commercial and Biomedical Applications of Ultrafast Lasers III vol. 4978, 2003, pp. 147-154.
[83] R. Ulrich, "Image formation by phase coincidences in optical waveguides," Optics Communications, vol. 13, pp. 259-264, 1975.
[84] R. Ulrich and G. Ankele, "Self-imaging in homogeneous planar optical waveguides," Applied Physics Letters, vol. 27, pp. 337-339, 1975.
[85] M. Bachmann, P. A. Besse, and H. Melchior, "General self-imaging properties in N × N multimode interference couplers including phase relations," Appl. Opt., vol. 33, pp. 3905-3911, 1994.
[86] R. M. Jenkins, R. W. J. Devereux, and J. M. Heaton, "Waveguide beam splitters and recombiners based on multimode propagation phenomena," Opt. Lett., vol. 17, pp. 991-993, 1992.
[87] A. Yehia and D. Khalil, "Design of a compact three-dimensional multimode interference phased array structures (3-D MMI PHASAR) for DWDM applications," IEEE Journal of Selected Topics in Quantum Electronics, vol. 11, pp. 444-451, Mar-Apr 2005.
[88] P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, "Optical bandwidth and fabrication tolerances of multimode interference couplers," Journal of Lightwave Technology, vol. 12, pp. 1004-1009, Jun 1994.
[89] R. Ulrich and T. Kamiya, "Resolution of self-images in planar optical waveguides," Journal of the Optical Society of America, vol. 68, pp. 583-592, 1978.
[90] D. F. G. Gallagher and T. P. Felici, "Eigenmode expansion methods for simulation of optical propagation in photonics: pros and cons," in Proceedings of SPIE San Jose, CA, USA 2003, pp. 69-82.
[91] A. S. Sudbø, "Film mode matching: a versatile numerical method for vector mode field calculations in dielectric waveguides," Pure and Applied Optics, vol. 2, pp. 211-233, Sep 1993.
[92] J. Yao, D. Leuenberger, M. C. M. Lee, and M. C. Wu, "Silicon microtoroidal resonators with integrated MEMS tunable coupler," IEEE Journal of Selected Topics in Quantum Electronics, vol. 13, pp. 202-208, Mar-Apr 2007.
[93] J. Yao and M. C. Wu, "Bandwidth-tunable add-drop filters based on micro-electro-mechanical-system actuated silicon microtoroidal resonators," Opt. Lett., vol. 34, pp. 2557-2559, 2009.
[94] C. L. Bellew, S. Hollar, and K. S. J. Pister, "An SOI process for fabrication of solar cells, transistors and electrostatic actuators," in Boston Transducers'03: Digest of Technical Papers, Vols 1 and 2, New York, 2003, pp. 1075-1079.
[95] B. Jalali and S. Fathpour, "Silicon photonics," Journal of Lightwave Technology, vol. 24, pp. 4600-4615, Dec 2006.
[96] R. Won and M. Paniccia, "Integrating silicon photonics," Nature Photonics, vol. 4, pp. 498-499, Aug 2010.
[97] G. Cocorullo and I. Rendina, "Thermooptic modulation at 1.5 um in silicon etalon," Electronics Letters, vol. 28, pp. 83-85, Jan 1992.
[98] D. Marris-Morini, L. Vivien, J. M. Fédéli, E. Cassan, P. Lyan, and S. Laval, "Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure," Opt. Express, vol. 16, pp. 334-339, 2008.
[99] D. T. Fuchs, H. B. Chan, H. R. Stuart, F. Baumann, D. Greywall, M. E. Simon, and A. Wong-Foy, "Monolithic integration of MEMS-based phase shifters and optical waveguides in silicon-on-insulator," Electronics Letters, vol. 40, pp. 142-143, Jan 2004.
[100] T. Ikeda, K. Takahashi, Y. Kanamori, and K. Hane, "Phase-shifter using submicron silicon waveguide couplers with ultra-small electro-mechanical actuator," Optics Express, vol. 18, pp. 7031-7037, Mar 2010.
[101] C. Shiang-Woei, L. Yunn-Shiuan, and C. Jeng-Tzong, "Computational study of the effect of finger width and aspect ratios for the electrostatic levitating force of MEMS combdrive," Journal of Microelectromechanical Systems, vol. 14, pp. 305-312, 2005.
[102] M. C. M. Lee and M. C. Wu, "Variable bandwidth of dynamic add-drop filters based on coupling-controlled microdisk resonators," Optics Letters, vol. 31, pp. 2444-2446, Aug 2006.
[103] W. N. Ye, D. X. Xu, S. Janz, P. Cheben, M. J. Picard, B. Lamontagne, and N. G. Tarr, "Birefringence control using stress engineering in silicon-on-insulator (SOI) waveguides," Journal of Lightwave Technology, vol. 23, pp. 1308-1318, Mar 2005.
[104] M. Huang, "Stress effects on the performance of optical waveguides," International Journal of Solids and Structures, vol. 40, pp. 1615-1632, 2003.