研究生: |
丁怡文 Yi-Wen Ting |
---|---|
論文名稱: |
The Isothermal Crystallization Behavior of Gamma-ray Irradiation Syndiotactic Polystyrene 加馬輻射影響對排-聚苯乙烯(s-PS)等溫結晶熔融行為之研究 |
指導教授: |
李三保
Sanboh Lee |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 125 |
中文關鍵詞: | 對排聚苯乙烯 、輻射 、等溫結晶 |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
結晶性高分子的結晶特性及其所具有的結晶相,在過去的文獻當中有許多的討論,本文想要進一步探討對排聚苯乙烯的等溫結晶行為,並且經由示差掃瞄熱卡計(Differential Scanning Calorimeter, DSC)取得的實驗數據,再加上紅外光譜儀(FTIR)及X-ray繞射儀的分析結果,討論對排聚苯乙烯結晶相的變化。
本研究旨在討論在真空及空氣中照射不同劑量的加馬輻射(200kGy、400kGy、600kGy、800kGy)的非晶態對排聚苯乙烯,由高溫熔融態淬冷至不同的結晶溫度(Tc=220℃、230℃、240℃、250℃、260℃),持溫不同的時間後,對其等溫結晶行為有何影響。在相同的結晶溫度之下,隨著加馬輻射劑量的增加,對排聚苯乙烯的結晶度會越小,且達到飽和結晶度所需的時間就越久;而在相同加馬劑量照射之下,隨著等溫結晶溫度的提高,對排聚苯乙烯的結晶度也會越少,此外,對排聚苯乙烯在空氣中受加馬輻射照射所產生的結晶量,不管在哪一個結晶溫度下,都比在真空中受加馬輻射的對排聚苯乙烯來得大。再者,經由高斯函數和X-ray與FTIR的分析,可得知對排聚苯乙烯具有三種不同的晶相:α、β和β′相。由FTIR及X-ray的分析可知,在真空中受加馬輻射的對排聚苯乙烯,當等溫結晶溫度介於230℃∼250℃時,隨著持溫時間的增加,α所佔的比例會越來越多,β則是越來越少,會有α〞轉為β′的情形,而在空氣中照射加馬射線的對排聚苯乙烯結晶型態則與真空中的趨勢相反。
[1] J. H. O’Donnell: The effect of radiation on High-Technology polymers. Editors: E. Reichmanis and J. H. O’Donnell, Publisher: The American Chemicak Society, Washington DC, Chapter 1, p1-2 (1989)
[2] http://www.crystalinks.com/gammarays.html
[3] D. F. Sangster: The effect of radiation on High-Technology polymers. Editors: E. Reichmanis and J. H. O’Donnell, Publisher: The American Chemicak Society, Washington DC, Chapter 2, p16 (1989)
[4] A. Charlesby: Effect of Molecular Weight on the Cross-linking of Siloxanes by High-energy Radiation. Nature, 173, p679-680 (1954)
[5] J. J. Han, H. W. Lee, W. J. Yoon, K. Y. Choi:Rate and molecular weight distribution modeling of syndiospecific styrene polymerization over silica-supported metallocene catalyst. Polymer, 48, p6519-6531 (2007)
[6] C. M. Pratt, S. Barton, E. McGonigle, M. Kishi, P. J. S. Foot:The effect ionising radiation on poly(methyl methacrylate) used in intraocular lenses. Polymer Degradation and Stability, 91, p2315-2317 (2006)
[7] J. H. O’Donnell :The effect of radiation on High-Technology polymers. Editors: E. Reichmanis and J. H. O’Donnell, Publisher: The American Chemicak Society, Washington DC, Chapter 1, p5-6 (1989)
[8] C. K. Liu: The irradiation effect and mechanical properties of polymers. National Tsing Hu University, PhD thesis (2005)
[9] V. K. Bhattacharya, M. M. Maiti, S. Maiti:Polymer characteristics and fracture morphology of radiation-polymerized methyl methacrylate-impregnated mortar. Journal of Applied Polymer Science , 30, p1935-1947 (2003)
[10] S. H. Jafari, A. Asadinezhad, A. Yavari, H. A. Khonakdar, F. Böhme:Compatibilizing Effects on the Phase Morphology and Thermal Properties of Polymer Blends Based on PTT and m-LLDPE. Polymer Bulletin, 54, p417-426 (2005)
[11] T. Seguchi, T. Yagi, S. Ishikawa, Y . Sano:New material synthesis by radiation processing at high temperature-polymer modification with improved irradiation technology. Radiation Physics and Chemistry, 63, p35-40 (2002)
[12] V. Pla ek, B. Bartoní ek, V. Hnát, B. Otáhal:Dose rate effects
in radiation degradation of polymer-based cable materials. Nuclear Instruments and Methods in Physics Research Section B : Beam Interactions with Materials and Atoms, 208, p448-453 (2003)
[13] G.Burillo, T.Ogawa:Effect of pressure on the radiation-induced cross-linking of some vinyl polymers. Radiation Physics and Chemistry, 25, p383-388 (1985)
[14] J. Li, J. Peng, J. Qiao, D. Jin, G. Wei : Effect of gamma irradiation
on ethylene–octene copolymers. Radiation Physics and Chemistry, 63, p501-504 (2002)
[15] Q. Ma, Y. Zhang, F. Gao, X. Wang, X. Zhao : Radiation Effects on Poly(cyclohexane carbonate). Chemistry Letters, 37, p206-207 (2008)
[16] K. Kanda, T. Ideta, Y. Haruyama, H. Ishigaki, S. Matsui:Surface Modification of Fluorocarbon Polymers by Synchrotron Radiation. Japanese Journal of Applied Physics, 42, p3983-3985 (2003)
[17] S. N. Yen, F. D. Osterholtz:Hydrogels from radiation crosslinked blends of hydrophilic polymers and fillers. United States Patent 3900378 (1975)
[18] L. D. Spartanburg:Method for improving dyeability of fiber and associated fabric utilizing radiation. US Patent 5298201 (1994)
[19] W. B. Wang:Application of radiation in industry and agriculture Science monthly, V103, July (1978)
[20] http://www.pidc.org.tw/default.aspx
[21] QUESTRA Crystalline Polymers Suggested Injection Molding
Conditions, Dow Plastics form number 301-02684-197, Midland, MI, Dow Plastics, 1997
[22] I. Janik, J. M. Rosiak:Radiation crosslinking and scission of
poly(vinyl methyl ether) in aqueous solution. Radiation Physics and Chemistry, 63, p529-532 (2002)
[23] E. Adem, J. Rickards, G. Burillo, M. Avalos-Borja:Changes in poly-vinylidene fluoride produced by electron irradiation. Radiation Physics and Chemistry, 54, p637-641 (1999)
[24] H. N. Subrahmanyam, S. V. Subramanyam:Thermal Expansion of Irradiated Polytetrafluoroethylene. Journal of Polymer Science:Part B:Polymer Physics, 25, p1549-1556 (1987)
[25] J. C. M. Suarez, E. B. Mano, R. A. Pereira:Thermal behavior of gamma-irradiated recycled polyethylene blends. Polymer Degradation and Stability, 69, p217-222 (2000)
[26] V. M. Aslanian, V. I. Vardanian, M. H. Avetisian, S. S. Felekian, S. R. Ayvasian:Effect of radiation on the crystallinity of low-density polyethylene. Polymer, 28, p755-757 (1987)
[27] Y. Feng, Z-T.I Ma, A. Singh, J. Silverman:Radiation processing of polymers. Publishers:Hanser, Munich, Oxford University Press, New York, p1 (1992)
[28] M. Osagawara:Application of pulse radiolysis to the study of polymers and polymerizations. Advances in Polymer Science, 10a, p37-79 (1993)
[29] W. Schnabel:Pulse radiolysis studies concerning oxidative degradation processes in linear polymers. Radiation Physics and Chemistry, 28 , p303-313 (1986)
[30] M. Al-Ali, N. K. Madi, N. J. Al Thani, M. El-Muraikhi, A. Turos︰Mechanical and thermal properties of gamma-ray irradiated polyethylene blends. Vacuum, 70, p227-236 (2003)
[31] A. B. Lugao, B. Hutzler, T. Ojeda, S. Tokumoto, R. Siemens, K. Makuuchi, A. L. C. H. Villavicencio:Reaction mechanism and rheological properties of polypropylene irradiated under various atmospheres. Radiation Physics and Chemistry, 57, p389-392 (2000)
[32] A. M. Evans, E. J. C. Kellar, J. Knowles, C. Galiotis, C. J. Carriere, E. H. Andrews:The structure and morphology of syndiotactic polystyrene injection molded coupons. Polymer Engineering and Science, 37, p153-165 (1997)
[33] G. Guerra, V. M. Vitagliano, C. D. Rosa, V. Petraccone, P. Corradini:Polymorphism in melt crystallized syndiotactic polystyrene samples. Macromolecules, 23, p1539-1544 (1990)
[34] C. D. Rosa:Crystal Structure of the Trigonal Modification ( Form) of Syndiotactic Polystyrene. Macromolecules, 29, p8460-8465 (1996)
[35] L. Cartier, T. Okihara, B. Lotzs:The '' "Superstructure" of Syndiotactic Polystyrene: A Frustrated Structure. Macromolecules, 31, p3303-3310 (1998)
[36] C. D. Rosa, M. Rapacciuolo, G. Guerra, V. Petraccone:On the crystal structure of the orthorhombic form of syndiotactic polystyrene. Polymer, 33(7), p1423-1428 (1992)
[37] R.M. Ho, C. P. Lin, H. Y. Tsai, E. M. Woo: Metastability Studies of Syndiotactic Polystyrene Polymorphism. Macromolecules, 33(17), p6517-6526 (2000)
[38] G. Guerra, V. M. Vitagliano, C. D. Rosa, V. Petraccone, P. Corradini: Polymorphism in melt crystallized syndiotactic polystyrene samples. Macromolecules, 23(5), p1539-1544 (1990).
[39] E. M. Woo, Y. S. Sun, M. L. Lee:Crystal forms in cold-crystallized syndiotactic polystyrene. Polymer, 40, p4425-4429 (1999)
[40] R. H. Lin, E. M. Woo:Melting behavior and identification of polymorphic crystals in syndiotactic polystyrene. Polymer, 41, p121-131 (2000)
[41] B.K. Hong, W. H. Jo, S. C. Lee, J. Kim:Correlation between melting behaviour and polymorphism of syndiotactic polystyrene and its blend with poly(2,6-dimethyl-1,4-phenylene oxide). Polymer, 39, p1793-1797 (1998)
[42] C. Wang, Y. C. Hsu, C. F. Lo:Melting behavior and equilibrium melting temperatures of syndiotactic polystyrene in α and β crystalline forms. Polymer, 42, p8447-8460 (2001)
[43] W. Zhou, M. Lu, K. Mai:Isothermal crystallization, melting behavior and crystalline morphology of syndiotactic polystyrene blends with highly-impact polystyrene. Polymer, 48, p3858-3867 (2007)
[44] C. D. Rosa, O. R. de Ballesteros, M. D. Gennaro, F. Auriemma:Crystallization from the melt of α and β forms of syndiotactic polystyrene. Polymer, 44, p1861-1870 (2003)
[45] R. M. Ho, C. P. Lin, P. Y. Hseih, T. M. Chung:Isothermal Crystallization-Induced Phase Transition of Syndiotactic Polystyrene Polymorphism. Macromolecules, 34, p6727-6736 (2001)
[46] Y. Li, J. He, W. Qiang, X. Hu:Effect of crystallization temperature on the polymorphic behavior of syndiotactic polystyrene. Polymer, 43, p2489-2494 (2002)
[47] R. Mishraa, S. P. Tripathya, D. Finkb, K. K. Dwivedi:Activation energy of thermal decomposition of proton irradiated polymers. Radiation Measurements, 40, p754 – 757 (2005)
[48] W. L. Bragg:The Diffraction of Short Electromagnetic Waves by a Crystal. Proceedings of the Cambridge Philosophical Society, 17, p43-57 (1914)
[49] S.W. Shalaby:Chapter 3, Thermal characterization of polymeric materials. Editor:E. A. Turi, Publisher:Academic Press, Orlando, FL, p260-261 (1981)
[50] H. Szocik, R. Jantas:Multimonomer and Cross-linked polymers formed by its copolymerization. Journal of Thermal Analysis and Calorimetry, 76, p307-312 (2004)
[51] Z. Stojanovic, Z. Kacarevic-Popovic, S. Galovic, D. Milicevic, E. Suljovrujic : Crystallinity changes and melting behavior of the uniaxially oriented iPP exposed to high doses of gamma radiation. Polymer Degradation and Stability, 87, p279-286 (2005)
[52] R. Clough : Radiation-resistant Polymers. Encyclopedia of polymer science and engineering, 13, P667-708 (1988)
[53] T. Seguchi : New trend of radiation application to polymer modification- irradiation in oxygen free atmosphere and at elevated temperature. Radiation Physics and Chemistry, 57, p367-371 (2000)
[54] T. Dergez, F. Könczöl, N. Farkas, J. Belagyi, D. Lörinczy : DSC study of glycerol-extracted muscle fibers in intermediate states of ATP hydrolysis. Journal of Thermal Analysis and Calorimetry, 80, p445-449 (2005)
[55] E. M. Woo, F. S. Wu:On the multiple melting behavior of polymorphic syndiotactic polystyrene and its behavior in a miscible state. Macromolecular Chemistry and Physics, 199, p2041-2049 (1998)
[56] C. Wang, Y. C. Hsu, C. F. Lo:Melting behavior and equilibrium melting temperature of syndiotactic polystyrene in α and β crystalline forms. Polymer, 42, p8447-8460 (2001)
[57] G. Guerra, V. M. Vitagliano, C. D. Rosa, V. Petraccone, P. Corradini: Polymorphism in melt crystallized syndiotactic polystyrene samples. Macromolecules, 23(5), p1539-1544 (1990)
[58] R. M. Ho, C. P. Lin, P. Y. Hseih, T. M. Chung: Isothermal crystallization-induced phase transition of syndiotactic polystyrene polymorphism. Macromolecules, 34(19), p6727-6736 (2001)
[59] R. M. Ho, C. P. Lin, H. Y. Tsai, E. M. Woo: Metastability studies of syndiotactic polystyrene polymorphism. Macromolecules, 33(17), p6517-6526 (2000)
[60] R. Xu, H. Nguyen, P. Sobol, S. L. Wang, A. Wu, K. E. Johnson : Application of Principal Component Analysis to the FTIR Spectra of Disk Lubricant to Study Lube-Carbon Interactions. IEEE Transactions on Magnetics. 40, p3186-3188 (2004)
[61] M. Avrami : Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III., Journal of Chemical Physics, 9, p177-184 (1941)
[62] M. Avrami:Kinetics of Phase Change. I General Theory. Journal of Chemical Physics, 7(12), p1103-1112 (1939).
[63] C. Wang, C. L. Huang, Y. W. Cheng, Y. C. Chen, J. Shong:Radiation effects and re-crystallization mechanism of syndiotactic polystyrene with β′ crystalline form. Polymer, 48, p7393-7403 (2007)
[64] R. D. Wesson:Melt crystallization kinetics of syndiotactic polystryrene. Polymer Engineering and Science, 34, p1157-1160 (1994)
[65] S. ST. Lawrence, D. M. Shinozaki : Crystallization of Syndiotactic Polystyrene. Polymer Engineering and Science, 37, p1825-1832 (1997)
[66] A. Yoshioka, K. Tashiro : Thermally- and solvent-induced crystallization kinetics of syndiotactic polystyrene viewed from time-resolved measurements of infrared spectra at the various temperatures estimation of glass transition temperature shifted by solvent absorption. Polymer, 44, p6681-6688 (2003)