研究生: |
王立蓁 Wang, Li-Chen |
---|---|
論文名稱: |
研究膽固醇與醣化膽固醇影響細胞膜之流動性 Investigation of cholesterol and cholesteryl glucoside in influencing membrane fluidity |
指導教授: |
王雯靜
Wang, Wen-Ching |
口試委員: |
王雯靜
林立元 許宗雄 彭慧玲 張晃猷 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 53 |
中文關鍵詞: | 薑黃素 、細胞膜流動性 |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Helicobacter pylori is a Gram-negative microaerophilic gastric pathogen that infects approximately one-half of the human population. Infection withH. pylori is associated with gastritis, ulcerations, and gastric cancer.The common therapy for H. pylori infections is triple therapy that includes two kinds of antibiotics and a proton pump inhibitor. Given the high use of the antibiotic treatment, there is a decreasing rate in eliminating the infection in most countries.Curcumin is a natural yellow coloring polyphenol agent present in the spice turmeric (Curcuma longa), exhibits anti-inflammatory, antineoplastic, anti-oxidant and chemopreventive activities and has been demonstrated the effects of curcumin on the serum cholesterol and lipid peroxide levels. The membrane of biological cells or intra-cellular organelles plays an important role in maintaining cellular physiological functions. Here we utilized curcumin to treat AGS cells to evaluate the change in the membrane fluidity and to evaluate whether internalized of H. pylori was influenced (H. pylori internalization) by curcumin treatment. Results from amoxicillin protection assay showed that there was reduced colony forming numbers of bacteria when cells were treated with curcumin. We also observed a higher level of amoxicillin in the cytosol for curcumin-treated cells. Finally we applied fluorescence correlation spectroscopy (FCS) that is a technique to study molecular dynamics and mobility at single molecule level in solution. Our results revealed that curcumin treated cells exhibited a higher diffusion coefficient than did cells without treatment. Our results together suggested that curcumin influenced the membrane fluidity, thereby bacterial internalization.
We have also analyzed the effect of cholesteryl-α-D-glucopyranosides (αCGs) by cholesterol-α-glucosyltransferase on the membrane fluidity. We have prepared a fluorophore-labeld αCG –incorporated liposomes. Fluorescence correlation spectroscopy analysis revealed that the addition of αCGs into the liposome led to an increased value of diffusion coefficient of DiIC18. Our results revealed that αCGs-treated liposome or cells exhibited a higher diffusion coefficient than did cells without treatment. Our results together suggested that αCG influenced the membrane fluidity.
1. Dunn, B.E., H. Cohen, and M.J. Blaser, Helicobacter pylori. Clin Microbiol Rev, 1997. 10(4): p. 720-41.
2. Marshall, B.J. and J.R. Warren, Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet, 1984. 1(8390): p. 1311-5.
3. Blaser, M.J., Helicobacter pylori and the pathogenesis of gastroduodenal inflammation. J Infect Dis, 1990. 161(4): p. 626-33.
4. Nomura, A., et al., Helicobacter pylori infection and gastric carcinoma among Japanese Americans in Hawaii. N Engl J Med, 1991. 325(16): p. 1132-6.
5. Schistosomes, liver flukes and Helicobacter pylori. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Lyon, 7-14 June 1994. IARC Monogr Eval Carcinog Risks Hum, 1994. 61: p. 1-241.
6. Appelmelk, B.J., et al., Potential role of molecular mimicry between Helicobacter pylori lipopolysaccharide and host Lewis blood group antigens in autoimmunity. Infect Immun, 1996. 64(6): p. 2031-40.
7. Goodwin, C.S., A. Gordon, and V. Burke, Helicobacter pylori (Campylobacter pylori) and duodenal ulcer. Med J Aust, 1990. 153(2): p. 66-7.
8. Dunn, B.E., et al., Localization of Helicobacter pylori urease and heat shock protein in human gastric biopsies. Infect Immun, 1997. 65(4): p. 1181-8.
9. Tomb, J.F., et al., The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature, 1997. 388(6642): p. 539-47.
10. Alm, R.A., et al., Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature, 1999. 397(6715): p. 176-80.
11. Oh, J.D., et al., The complete genome sequence of a chronic atrophic gastritis Helicobacter pylori strain: evolution during disease progression. Proc Natl Acad Sci U S A, 2006. 103(26): p. 9999-10004.
12. Baltrus, D.A., et al., The complete genome sequence of Helicobacter pylori strain G27. J Bacteriol, 2009. 191(1): p. 447-8.
13. Dong, Q.J., et al., Comparative genomics of Helicobacter pylori. World J Gastroenterol, 2009. 15(32): p. 3984-91.
14. Blaser, M.J., Helicobacter pylori: its role in disease. Clin Infect Dis, 1992. 15(3): p. 386-91.
15. Lin, J.T., et al., Seroprevalence study of Helicobacter pylori infection in patients with gastroduodenal diseases. J Formos Med Assoc, 1994. 93(2): p. 122-7.
16. McCarthy, C., et al., Long-term prospective study of Helicobacter pylori in nonulcer dyspepsia. Dig Dis Sci, 1995. 40(1): p. 114-9.
17. Akamatsu, T., et al., Transmission of Helicobacter pylori infection via flexible fiberoptic endoscopy. Am J Infect Control, 1996. 24(5): p. 396-401.
18. Thomas, J.E., et al., Isolation of Helicobacter pylori from human faeces. Lancet, 1992. 340(8829): p. 1194-5.
19. Megraud, F., Transmission of Helicobacter pylori: faecal-oral versus oral-oral route. Aliment Pharmacol Ther, 1995. 9 Suppl 2: p. 85-91.
20. Malfertheiner, P., et al., Current European concepts in the management of Helicobacter pylori infection--the Maastricht Consensus Report. The European Helicobacter Pylori Study Group (EHPSG). Eur J Gastroenterol Hepatol, 1997. 9(1): p. 1-2.
21. Gisbert, J.P. and J.M. Pajares, Treatment of Helicobacter pylori infection: the past and the future. Eur J Intern Med, 2010. 21(5): p. 357-9.
22. Ohvo-Rekila, H., et al., Cholesterol interactions with phospholipids in membranes. Prog Lipid Res, 2002. 41(1): p. 66-97.
23. Kahya, N. and P. Schwille, How phospholipid-cholesterol interactions modulate lipid lateral diffusion, as revealed by fluorescence correlation spectroscopy. J Fluoresc, 2006. 16(5): p. 671-8.
24. Day, C.A. and A.K. Kenworthy, Tracking microdomain dynamics in cell membranes. Biochim Biophys Acta, 2009. 1788(1): p. 245-53.
25. Chen, Y., et al., Methods to measure the lateral diffusion of membrane lipids and proteins. Methods, 2006. 39(2): p. 147-53.
26. Fushimi, K., J.A. Dix, and A.S. Verkman, Cell membrane fluidity in the intact kidney proximal tubule measured by orientation-independent fluorescence anisotropy imaging. Biophys J, 1990. 57(2): p. 241-54.
27. Zubenko, G.S., et al., Platelet membrane fluidity individuals at risk for Alzheimer's disease: a comparison of results from fluorescence spectroscopy and electron spin resonance spectroscopy. Psychopharmacology (Berl), 1999. 145(2): p. 175-80.
28. Fukaya, T., et al., Arachidonic acid preserves hippocampal neuron membrane fluidity in senescent rats. Neurobiol Aging, 2007. 28(8): p. 1179-86.
29. Magde,D.,Elson,E.& Webb,W.W.Thermodynamic fluctuations in a reacting system:measurement by fluorescence correlation spectroscopy. Physical Review Letter 29,705-708(1972)
30. Rigler,R.,Mets,U.,Widengren,J.& Kask,P.Fluorescence correlation spectroscopy with high count rate and low-background - analysis of translational diffusion.European Biophysics Journal with Biophysics Letter22,169-175(1993)
31. Berland, K.M., P.T. So, and E. Gratton, Two-photon fluorescence correlation spectroscopy: method and application to the intracellular environment. Biophys J, 1995. 68(2): p. 694-701.
32. Schwille, P., F.J. Meyer-Almes, and R. Rigler, Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys J, 1997. 72(4): p. 1878-86.
33. Heinze, K.G., et al., Two-photon fluorescence coincidence analysis: rapid measurements of enzyme kinetics. Biophys J, 2002. 83(3): p. 1671-81.
34. Petersen, N.O., Scanning fluorescence correlation spectroscopy. I. Theory and simulation of aggregation measurements. Biophys J, 1986. 49(4): p. 809-15.
35. Petersen, N.O., et al., Quantitation of membrane receptor distributions by image correlation spectroscopy: concept and application. Biophys J, 1993. 65(3): p. 1135-46.
36. Kastrup, L., et al., Fluorescence fluctuation spectroscopy in subdiffraction focal volumes. Physical Review Letters, 2005. 94(17): p. 178104.
37. Elson, E.L., et al., Measurement of lateral transport on cell surfaces. Prog Clin Biol Res, 1976. 9: p. 137-47.
38. Fahey, P.F., et al., Lateral diffusion in planar lipid bilayers. Science, 1977. 195(4275): p. 305-6.
39. Korlach, J., et al., Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. Proc Natl Acad Sci U S A, 1999. 96(15): p. 8461-6.
40. Schwille, P., et al., Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation. Biophys J, 1999. 77(4): p. 2251-65.
41. Bacia, K., I.V. Majoul, and P. Schwille, Probing the endocytic pathway in live cells using dual-color fluorescence cross-correlation analysis. Biophys J, 2002. 83(2): p. 1184-93.
42. Haupts, U., et al., Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy. Proc Natl Acad Sci U S A, 1998. 95(23): p. 13573-8.
43. Kettling, U., et al., Real-time enzyme kinetics monitored by dual-color fluorescence cross-correlation spectroscopy. Proc Natl Acad Sci U S A, 1998. 95(4): p. 1416-20.
44. Eggeling, C., et al., Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature, 2009. 457(7233): p. 1159-62.
45. Krichevsky,o.& Bonnet,G.Fluorescence correlation spectroscopy : the technique and its application.Reports on Progress in Physics 65,251-297(2002)
46. Garcia-Saez, A.J. and P. Schwille, Fluorescence correlation spectroscopy for the study of membrane dynamics and protein/lipid interactions. Methods, 2008. 46(2): p. 116-22.
47. Dietrich, C., et al., Lipid rafts reconstituted in model membranes. Biophys J, 2001. 80(3): p. 1417-28.
48. Inoue, Y., et al., Molecular cloning and characterization of chick SPACRCAN. J Biol Chem, 2006. 281(15): p. 10381-8.
49. Sandur, S.K., et al., Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism. Carcinogenesis, 2007. 28(8): p. 1765-73.
50. Sandur, S.K., et al., Role of pro-oxidants and antioxidants in the anti-inflammatory and apoptotic effects of curcumin (diferuloylmethane). Free Radic Biol Med, 2007. 43(4): p. 568-80.
51. Anto, R.J., et al., Curcumin (diferuloylmethane) induces apoptosis through activation of caspase-8, BID cleavage and cytochrome c release: its suppression by ectopic expression of Bcl-2 and Bcl-xl. Carcinogenesis, 2002. 23(1): p. 143-50.
52. Soni, K.B. and R. Kuttan, Effect of oral curcumin administration on serum peroxides and cholesterol levels in human volunteers. Indian J Physiol Pharmacol, 1992. 36(4): p. 273-5.
53. Ramirez Bosca, A., et al., An hydroalcoholic extract of Curcuma longa lowers the abnormally high values of human-plasma fibrinogen. Mech Ageing Dev, 2000. 114(3): p. 207-10.
54. Kim, M. and Y. Kim, Hypocholesterolemic effects of curcumin via up-regulation of cholesterol 7a-hydroxylase in rats fed a high fat diet. Nutr Res Pract, 2010. 4(3): p. 191-5.
55. Peschel, D., R. Koerting, and N. Nass, Curcumin induces changes in expression of genes involved in cholesterol homeostasis. J Nutr Biochem, 2007. 18(2): p. 113-9.
56. Kumar, P., et al., SREBP2 mediates the modulation of Intestinal NPC1L1 Expression by Curcumin. Am J Physiol Gastrointest Liver Physiol, 2011.
57. Kang, Q. and A. Chen, Curcumin inhibits srebp-2 expression in activated hepatic stellate cells in vitro by reducing the activity of specificity protein-1. Endocrinology, 2009. 150(12): p. 5384-94.
58. Wunder, C., et al., Cholesterol glucosylation promotes immune evasion by Helicobacter pylori. Nat Med, 2006. 12(9): p. 1030-8.
59. Testerman, T.L., D.J. McGee, and H.L. Mobley, Helicobacter pylori growth and urease detection in the chemically defined medium Ham's F-12 nutrient mixture. J Clin Microbiol, 2001. 39(11): p. 3842-50.
60. Lebrun, A.H., et al., Cloning of a cholesterol-alpha-glucosyltransferase from Helicobacter pylori. J Biol Chem, 2006. 281(38): p. 27765-72.
61. Chu, Y.T., et al., Invasion and multiplication of Helicobacter pylori in gastric epithelial cells and implications for antibiotic resistance. Infect Immun, 2010. 78(10): p. 4157-65.
62. Wayne M. Becker,L.J.K.,Jeff Hardin The World of the Cell,Edn. 6th. Benjamin Cummings, 2005.
63. Tai, W.Y., et al., Interplay between structure and fluidity of model lipid membranes under oxidative attack. J Phys Chem B, 2010. 114(47): p. 15642-9.
64. Mandell, G.L., Interaction of intraleukocytic bacteria and antibiotics. J Clin Invest, 1973. 52(7): p. 1673-9.
65. Vaudaux, P. and F.A. Waldvogel, Gentamicin antibacterial activity in the presence of human polymorphonuclear leukocytes. Antimicrob Agents Chemother, 1979. 16(6): p. 743-9.
66. Lai, C.H., et al., Cholesterol depletion reduces Helicobacter pylori CagA translocation and CagA-induced responses in AGS cells. Infect Immun, 2008. 76(7): p. 3293-303.
67. Sorscher, S.M., J.C. Bartholomew, and M.P. Klein, The use of fluorescence correlations spectroscopy to probe chromatin in the cell nucleus. Biochim Biophys Acta, 1980. 610(1): p. 28-46.
68. Meseth, U., et al., Resolution of fluorescence correlation measurements. Biophys J, 1999. 76(3): p. 1619-31.
69. Schwille, P., J. Korlach, and W.W. Webb, Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes. Cytometry, 1999. 36(3): p. 176-82.