簡易檢索 / 詳目顯示

研究生: 林慧芬
論文名稱: 非線性邊界值問題分歧點計算及其解路徑延拓
The Continuation of Solution Paths aned The Computation of Branching Points of A Nolinear Boundary-Valued Problem
指導教授: 簡國清
口試委員:
學位類別: 碩士
Master
系所名稱:
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 159
中文關鍵詞: 分歧點轉彎點打靶法牛頓迭代法隱函數定理解分支割線猜測法虛擬弧長延拓法分歧圖
外文關鍵詞: Bifurcation point, Turning point, Shooting method, Newton’s interative method, Implicit function theorem, Solution branches, Secant -predictor method, Pseudo-arclength continuation method, Bifurcation diagram
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要在探討非線性邊界值常微分方程組之轉彎點,分歧點與其解分支結構.
    首先,我們利用打靶法及牛頓迭代法,來推導計算出分歧點或轉彎點.並以隱函數定理為基礎,運用Liapunov-schmidt降階法,虛擬弧長延拓法,割線猜測法及牛頓迭代法等數值方法,來延拓出所有通過分歧點的解分支路徑.
    最後,我們改變其中一參數,而將其他參數固定,分別求得分歧現象,分歧點與轉彎點的變化.


    This thesis investigates the turning points, bifurcation points and solution branches of nonlinear ordinary differential equations with the boundary-values.
    First, we use shooting method and newton’s interative method to calculate the bifurcation points or turning points.We use implicit function theorem as the foundation to quote the numerical method of the Liapunov-Schmidt reduction method, pseudo-archength continuation method, secant-predictor method, and Newton’s interative method,to continue all solution branches from bifurcation points.
    Finally, we change one of the parameters and fix the others to find the bifurcation phenomenon, and the changes of bifurcation points and turning points.

    第一章 緒論 1 第二章 分歧理論與延拓法 4 2.1 分歧理論 4 2.2 分歧問題 6 2.3 局部延拓法 8 2.3.1 猜測法 9 2.3.2 解法 10 2.4 虛擬弧長延拓法 12 第三章 常微分方程組過邊界值之分歧點與解分支 14 3.1 分歧點之求法 14 3.2 選取分歧點解分支之延拓方向 25 3.2.1 Liapunov-schmidt降階法 26 3.2.2 選取解分支延拓方向 30 3.2.3 選取各解分支延拓方向之初始猜值 33 3.3 解分支之解路徑及初始點後之猜值 35 3.3.1虛擬弧長延拓法之數值計算 35 3.3.2 割線猜測法與牛頓迭代法求解路徑 37 3.4 演算法 37 3.4.1求常微分方程組邊界值之初始值及分歧點 37 3.4.2 選取解分支之延拓方向與該方向上第一點解初始猜值 39 3.4.3 虛擬弧長延拓法求解分支之解路徑及初始點後猜值 41 第四章 數值實驗 43 4.1 分歧現象與分歧變化 44 4.1.1 實驗(4.1.1): Pe值實驗結果 44 4.1.2 實驗(4.1.2): β值實驗結果 65 4.1.3 實驗(4.1.3): B值實驗結果 113 4.2 轉彎點變化 150 4.2.1 實驗(4.2.1): Pe值實驗結果 150 4.2.2 實驗(4.2.2): β值實驗結果 155 4.2.3 實驗(4.2.3): B值實驗結果 156 第五章 結論 158 參考文獻

    [1] Bellman,R. and Kalaba,R., Quasilinearization and
    Non-Linear Boundary Value Problems, American Elsevier, New
    York, 1965.
    [2] Collatz, E. A. and Levinson, N., Funktionalanalysis and
    Numerische Mathematik, Springer-Verlag, Berlin, 1964.
    [3] Crandall,M.G., An Introduction to Constructive Aspects of
    Bifurcation Theorem, Academic Press, pp.1-35, 1977.
    [4] Crandall, M.G. and Rabinowitz, P. H., Mathematical Theory
    of Bifurcation,Bifurcation Phenomena in Mathematical
    Physics and Related Topics, NATO Advanced Study Institute Series, 1979.
    [5] Crandall,M.G., An Introduction to Constructive Aspects of
    Bifurcation Theorem, Academic Press, pp.1-35, 1977.
    [6] Fox, L., The Numerical Solution of Two-Point Boundary
    Problems in Ordinary Differential Equations, Clarendon
    Press, Oxford, 1957.
    [7] Goodman, T. R. and Lance, G. N., Math Tables and Other Aids
    to Comput, X(54),82, 1956.
    [8] Iooss,G and Joseph,D.D., Elementary Stability and Bifurcation Theory, Spring-Verleg, 1989.
    [9] Keller,H.B., in " Recent Advances in Numerical Analysis ", Academic Press, New York, pp.73, 1978.
    [10] Keller,H.B., Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems, Applications of Bifurcation Theory Academic Press, pp.359-384, 1977.
    [11] Keller,H.B., Lectures on Numerical Methods in Bifurcation
    Problems, Springer-Verlag, 1987.
    [12] Kubiček,M., Evalution of Branching Points for Nonlinear
    Boundary-Value Problems Based on the GPM Technique, Applied Mathematics and Computation 1, pp.341-352, 1975.
    [13] Kubiiček,M. and Hlavaček,V., General Parameter Mapping Technique-A Procedure for Solution of Non-linear Boundary Value Problems Depending on an Actual Paroblems, J. Inst. Maths Applics 12, pp.287-293, 1973.
    [14] Kubiček,M. and Marek,M., Computational Methods in Bifurcation Theory and Dissipative Structures, Springer-Verlag, New York, 1983.
    [15] Küpper,T., Mittelmann,H.D. and Weber,H.(eds.), Numerical Methods for Bifurcation Problems, Birkhäuser, Basel, 1984.
    [16] Milan Kubiček and Alois Klič, Direction of Branches Bifurcation at a Bifurcation Point. Determination of Starting Points for a Continuation Algorithm, Applid Mathematics and Computation 13, pp.125-142, 1983.
    [17] Rheinboldt,W.C., Numerical Analysis of Parameterized Nonlinear Equations, Wiley, New York.
    [18] Wacker,H.(ed),Continuation Methods, Academic Press, New York, 1978.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE