研究生: |
張 森 Zhang, Sen |
---|---|
論文名稱: |
p類型Banach空間中逐行獨立的隨機元素陣列的完全收斂性質之研究 Complete Convergence of Sums of Row-wise Independ-ent Random Elements in Type p Banach Space |
指導教授: |
胡殿中
Hu, Tien-Chung 高淑蓉 Kao, Shu-Jung |
口試委員: |
徐南蓉
Hsu, Nan-Jung 洪慧念 Hung, Hui-Nien 樊采虹 Fan, Tsai-Hung 趙一峰 Chao, I-Feng |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 64 |
中文關鍵詞: | 逐行獨立 、隨機元素 、p類型可分離的Banach空間 、完全收斂 |
外文關鍵詞: | row-wise independent, random elements, type p separable Banach space, complete convergence |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要考慮在p類型可分離的Banach空間上的逐行獨立的隨機元素陣列的完全收斂性質。在第一章中,我們給出了隨機元素的基本定義,介紹了p類型可分離的Banach空間及其基本性質,引入了完全收斂性質的基本概念及其拓展,並敘述和證明了幾個必要的不等式。在第二章中,我們從Kolmolgorov三級數定理獲得啟發,給出了在p類型可分離的Banach空間上的隨機元素陣列的完全收斂性定理。
在第三章中,我們給出了一些特殊形態的隨機元素陣列完全收斂性的判別法,並研究了加權的隨機元素陣列的完全收斂性。在第四章中,我們構造了四個重要的例證,以解釋說明上述工作的意義。在第五章中,我們總結了全文,並提供了一些改進的方向。
In this thesis, we investigate the complete convergence for row sums of arrays of row-wise independent random elements taking values in type p separable Banach spaces. In Chapter 1, we introduce basic definitions and properties of random elements taking val-ue in separable Banach spaces and type p separable Banach spaces. And we introduce the basic concept of complete convergence of random elements and their improvement and describe and prove several necessary inequalities. In Chapter 2, being inspired by the Kolmogorov three-series theorem, we obtain two complete convergence theorems for arrays of random elements taking values in type p separable Banach spaces. In Chap-ter 3, We provide several criteria of complete convergences for some particular cases of random element arrays. We also investigate complete convergences of row-wise weighted sums for arrays of random elements. In Chapter 4, we construct four illustra-tive examples to explain those works in previous Chapters. In chapter 5, we summarize and provide some possible directions for study in the future.
[1] Hsu, P.L., and Robbins, H. (1947). Complete convergence and the law of large
numbers. Proc. Nat. Acad. Sci. USA 33:25-31.
[2] Erdös, P. (1949). On a theorem of Hsu and Robbins. Ann. Math. Statist. 20:286-291.
[3] Mourier, E.(1953). Eléments aleatories dan un espace de Banach. Ann. Inst. Henri Poincaré. 13:159-244.
[4] Hoffmann-Jørgensen, J., and Pisier, G. (1976). The law of large numbers and the central limit theorem in Banach spaces. Ann. Prob. 4:587-599.
[5] Hoffmann-Jørgensen, J. (1974). Sums of independent Banach space valued random variables. Studia Math. 52:159-186.
[6] Woyczynski, W.A. (1980). On Marcinkiewicz-Zygmund laws of large numbers in Banach spaces and related rates of convergence, Prob. Math. Statist. 1:117-131.
[7] Acosta, A.D. (1981). Inequalities for B-valued random vectors with applications to the strong law of large numbers. Ann. Prob. 9: 157-161.
[8] Rosenthal, H.P. (1970). On the subspaces of Lp (p > 2) spanned by sequences of
independent random variables. Israel J. Math. 8:273-303.
[9] Ledoux, M., and Talagrand, M. (2011). Probability in Banach spaces: Isoperimetry and processes. Reprint of the 1991 edition. Classics in Mathematics. Springer-Verlag, Berlin.
[10] Rosalsky, A., and Van Thanh, L. (2007). On the strong law of large numbers for se-quences of blockwise independent and blockwise p-orthogonal random elements in Rademacher type p Banach spaces. Prob. Math. Statist. 27(2):205-222.
[11] Taylor, R.L. (1978). Stochastic convergence of weighted sums of random elements in linear spaces. Lecture Notes in Math. Vol. 672. Springer-Verlag, Berlin.
[12] Hu, T.C., F. Moricz, F. and Taylor, R.L. (1989). Strong laws of large numbers for arrays of row-wise independent random variables. Acta. Math. Hung. 54 (1-2):153-162.
[13] Wang, X., Bhaskara Rao, B. and Yang, X. (1993). Convergence rates on strong laws of large numbers for arrays of row-wise independent elements. Stochastic Anal. And Appl, 11 No.1:115-132.
[14] Hu, T.C., Szynal, D., and Volodin, A. (1998). A note on complete convergence for
arrays. Statist. Prob. Lett. 38:27-31.
[15] Hu, T.C., Rosalsky, A., Szynal, D., and Volodin, A. (1999). On complete conver-gence for arrays of row-wise independent random elements in Banach spaces. Stochastic Anal. Appl. 17:963-992.
[16] Hu, T.C., and Volodin, A. (2000). A note on complete convergence for arrays. Stat-ist. Prob. Lett. 38:27-31
[17] Hu, T.C., Ordonez-Cabrera, M., Sung, S.H., and Volodin, A. (2003). Complete con-vergence for arrays of row-wise independent random variables. Commun. Korean Math. Soc. 18:375-383.
[18] Chen, P.Y., and Gan, S.X. (2004). Remark on complete convergence for arrays. Un-published manuscript.
[19] Sung, S.H., Volodin, A., and Hu, T.C. (2005). More on complete convergence for arrays. Statist. Prob. Lett. 71(4):303-311.
[20] Sung, S.H., Ordonez-Cabrera, M., and Hu, T. C. (2007). On complete convergence for arrays of row-wise independent random elements. J. Korean Math. Soc. 44:467-476.
[21] Kruglov, V.M., Volodin, A., and Hu, T.C. (2006). On complete convergence for
arrays. Statist. Prob. Lett. 76:1631-1640.
[22] Hu, T.C., Rosalsky, A., and Wang, K.L. (2011). Some complete convergence results for row sums from arrays of row-wise independent random elements in Rademacher type p Banach spaces. Lobachevskii J. Math. 32(1):71-87.
[23] Hu, T.C., Rosalsky, A., and Volodin, A. (2012). A complete convergence theorem for row sums from arrays of row-wise independent random elements in Rademacher type p Banach spaces. Stochastic Anal. Appl. 30(2):343-353.
[24] Hu, T.C., Rosalsky, A., Volodin, A., and Zhang, S. (2020). A complete convergence theorem for row sums from arrays of row-wise independent random elements in Rade-macher type p Banach spaces. II. Stochastic Anal. Appl. 39(1):177-193.
[25] Chen, P.Y., Hernandez, V., Urmeneta, H., and Volodin, A. (2010). A note on com-plete convergence for arrays of row-wise independent Banach space valued random el-ements. Stochastic Anal. Appl. 28:565-575.
[26] Hernandez, V., Urmeneta, H., and Volodin, A. (2007). On complete convergence for arrays of random elements and variables. Stochastic Anal. Appl. 25:281-291.
[27] Kuczmaszewska, A., and Szynal, D. (1994). On complete convergence in a Banach space. Internat. J. Math. Math. Sci. 17(1):1-14.
[28] Kuczmaszewska, A. (2004). On some conditions for complete convergence for ar-rays. Statist. Prob. Lett. 66:399-405.
[29] Sung, S.H., and Volodin, A. (2006). On the rate of complete convergence for weighted sums of arrays of random elements. J. Korean Math. Soc. 43:815-828.
[30] Sung, S.H., Urmeneta, H., and Volodin, A. (2008). On complete convergence for
arrays of random elements. Stochastic Anal. Appl. 26:595-602.