研究生: |
黃昭荏 Huang, Chao-Jen |
---|---|
論文名稱: |
利用原子連體力學法及等效方法探討多重尺度之結構分析 Analysis of Multi-scale Structures Using the Atomistic-Continuum Mechanics and the Equivalent Methods |
指導教授: |
江國寧
Chiang, Kuo-Ning |
口試委員: |
江國寧
Chiang, Kuo-Ning 鄭仙志 Cheng, Hsien-Chie 蔡宏營 Tsai, Hung-Yin 吳美玲 Wu, Mei-Ling 李昌駿 Lee, Chang-Chun |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2012 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 186 |
中文關鍵詞: | 原子連體力學法 、有限單元法 、等效方法 、多重尺度結構 、楊氏係數 、奈米碳管 、複合材料 |
外文關鍵詞: | atomistic-continuum mechanics method, finite-element method, equivalent method, multi-scale structural, Young’s modulus, carbon nanotubes, composite material |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著奈米科技不斷地發展與提升,許多研究學者為了探討奈米結構材料性質紛紛提出各式模擬方法,而常見分析法包含量子力學、分子動力學、蒙地卡羅法等。然而這些方法受限於電腦計算能力,故無法有效探討大尺度奈米結構。因此,如何降低中央處理器的計算時間,且同時保有原材料性質,即為重要議題。
為了降低大尺度奈米結構的計算時間及複雜度,本研究以原子連體力學法建立等效結構模型。其中,原子連體力學法是由原子力學、連體力學、等效理論、有限單元法與高速計算理論所組成,利用此方法預估多重尺度結構的機械強度。原子連體力學法是將原本不連續的原子結構等效成連續體結構,過程中不需假設鍵結的楊氏係數與截面積即具分析能力。該法建立之結構模型可分別使用拉伸試驗或模態分析,將其分析結果之反力或振動頻率反推結構的楊氏係數。本研究延伸應用此法預估矽鍺異質結構,並探討奈米碳管複合材料特性。
在評估矽鍺異質結構材料過程中,由於矽和鍺晶格尺寸不匹配,使得矽鍺於磊晶過程中將因材料比例或厚度差異呈現出不同的變形情形。本研究利用原子連體力學法、拘束方程式搭配微¬¬-巨觀理論描述奈米尺度下矽/矽鍺/矽異質結構承受應變的情形,進而探討矽與鍺在不同比例與不同厚度的情形下對於整體結構應變改變程度,將其結果與文獻比對驗證該法可行性。本研究分析結果符合文獻所提及當結構長度在50 nm時,將因邊緣的彎矩使整個應變矽承受壓應變的狀況,因此該分析法可供奈米尺度下應變矽在半導體元件尺度的設計方針。
奈米碳管楊氏係數藉由原子連體力學法分析得知,不論拉伸或模態分析所得之楊氏係數與文獻提供實驗結果具一致性,故此原子連體力學法的模型可有效描述奈米碳管結構之機械性質。本研究基於原子連體力學所得奈米碳管結構特性,分別使用等效固體元素、薄殼元素、臂元素的模型取代。當等效模型外加負載為拉伸、扭轉或剪力下反應出之物理行為與原子連體力學物理行為相近時,即稱其為有效的等效模型。這些等效結構模型可使用比原子連體力學法更少的元素數目描述相同的物理行為,並藉此克服電腦運算能力極限,以提升結構計算尺度。此外,由於迄今仍尚未有文獻明確定義奈米碳管束楊氏係大小是否與碳管束直徑相關。因此本研究提出三種較常被採用的奈米碳管束截面積方式探討其楊氏係數,結果顯示奈米碳管束實驗過程中選擇以外接圓方式定義其截面積為主流。此截面積假設指出楊氏係數隨著碳管束直徑增大後逐漸趨於穩定數值,此趨勢是由於每根碳管所圍成的面積及碳管間的餘隙面積比值的影響,當碳管束直徑增大時該比值隨著逐漸達穩定值所反應出的結果。
針對局域至廣域分析應用,本研究利用酚醛樹脂與奈米碳管束複合材料為例。驗證代表性體積元素其拉伸方向楊氏係數理論解與數值解的一致性,進而討論加強材料隨機分佈時影響楊氏係數的情形。本研究結果得知,等效模型可同時維持材料特性並減少計算上所需耗費的時間。透過與文獻驗證後,確認等效方法可有效使用於不同材料,並可著手從微觀至巨觀或巨觀至微觀的觀點進行探討分析。
The continuous development and improvement in the nanotechnology field prompt many researchers to develop various simulation methods to determine the material properties of nanoscale structures. The most common simulation methodologies include Quantum Mechanics, Molecular Dynamics, and Monte Carlo, among others. However, these methods are restricted by the time limitation of the central processing unit (CPU) computer hardware, which cannot estimate larger-scale nanoscale models. Thus, decreasing the CPU processing time and retaining the physical properties of nanoscale structures have become critical issues.
To decrease the CPU processing time and complexity of larger nanoscale models, the current study utilized atomistic-continuum mechanics (ACM) to build an equivalent model. ACM consists of atomic mechanics, continuous mechanics, equivalent theory, finite element method, and high-speed computing theory to estimate the mechanical properties of a multi-scale structure. ACM transfers an originally discrete atomic structure into an equilibrium continuum model, and does not require the assumption of the Young’s modulus and the cross-sectional area of each chemical bond. ACM can allow the Young’s modulus to be obtained using the same model for tensile and modal analyses. This study investigates the mechanical properties of silicon (Si)-germanium (Ge), hereafter SiGe, heterostructures and carbon nanotube (CNT) composite materials.
In the estimation of the material properties of SiGe heterostructures, different heterostructure volume fractions and thicknesses reflect the different deformations caused by the Si lattice constant that is not equal to that of Ge. This study utilized the ACM method, constraint equation, and local-global theory to establish a conceptual framework that links the lattices of Si and Ge. Therefore, this strategy can describe the strain effect caused by the lattice mismatch in the nanoscale heterostructure. The strain distribution with Si and Ge having different volume fractions and different thicknesses is investigated. The analytical result is also validated with previous studies indicating that the entire top Si layer surface depicts compressor strain when the mesa length is 50 nm. This study establishes a simulation method to obtain the mechanical behavior of nanoscale strained-silicon and serve as a guide for semiconductor devices design.
The Young’s modulus of CNTs can be presented using the ACM method. Both tensile and modal analytical results agree with the experimental results in literature indicating that the ACM model can properly describe mechanical properties. Based on this result, this study investigated the equivalent solid, shell, and beam models to generate similar mechanical behaviors with the ACM model. The similar mechanical behavior of the equivalent model includes the model under tensile, torsion, or shear external loading. These equivalent models can significantly reduce the required total element number and CPU processing time to investigate a larger nanoscale structure. This study also adopted three cross-sectional area definitions to explore whether the Young’s modulus of CNT ropes depends on the cross-sectional area definition. The results indicate that the Young’s modulus distribution based on the circumcircle assumptions well agrees with most of the experimental results. Hence, most experimental methods adopted the circumcircle to obtain the Young’s modulus of the CNT ropes. The circumcircle assumption involves the distribution of the tubes and the gap between each tube. The ratio between the gap and tube areas becomes a stable value when the diameter of the CNT ropes is increased. Therefore, a larger diameter of CNT ropes that represents the Young’s modulus becomes a stable value, as mentioned in literature.
This study adopted phenolic resin/CNT composite material to discuss local and global technique applications. The representative volume element was utilized to validate the consistency of the Young’s modulus of theoretical and numerical results. The equivalent models simultaneously decrease the CPU processing time and maintain mechanical behavior, making them sufficient, accurate, and acceptable. This equivalent method is feasible from a local to global perspective and vice versa.
1 A. A. Gusev, “Finite Element Mapping for Spring Network Representations of the Mechanics of Solids,” Phys. Rev. Let., vol.93, pp.034302-1-034302-4, 2004.
2 J. W. Chung, J. Th. M. De Hosson, and E. van der Giessen, “Scaling of the failure stress of homophase and heterophase three-dimensional spring networks,” Phys. Rev. B, vol.65, pp.094104-1-094104-8, 2002.
3 K. N. Chiang, C. Y. Chou, C. J. Wu, and C. A. Yuan, “Prediction of the bulk elastic constant of metals using atomic-level single-lattice analytical method,” Appl. Phys. Lett., vol.88, pp.171904-1171904-3, 2006.
4 S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol.354, pp.56-58, 1991.
5 Y. Sun and Q. Chen, “Diameter dependent strength of carbon nanotube reinforced composite,” Appl. Phys. Lett., vol.95, pp.21901-1-21901-3, 2009.
6 J. P. Salvetat, G. A. D. Briggs, J. M. Bonard, R. R. Bacsa, A. J. Kulik, T. Stockli, N. A. Burnham, and L. Forro, “Elastic and shear moduli of single-walled carbon nanotube ropes,” Phys. Rev. Lett., vol.82, pp.944-947, 1999.
7 J. G. Lawrence, L. M. Berhan, and A. Nadarajah,
8 P. Poncharal, Z. L. Wang, D. Ugarte, and W. A. de Heer, “Electrostatic deflections and electromechanical resonances of carbon nanotubes,” Science, vol.283, pp.1513-1516, 1999.
9 C. J. Wu, C. Y. Chou, C. N. Han, and K. N. Chiang, “Estimation and validation of elastic modulus of carbon nanotubes using nanoscale tensile and vibrational analysis,” CMES-Comp. Model. Eng. Sci., vol.41, pp.49-68, 2009.
10 C. J. Wu, “Investigation of carbon nanotube mechanical properties using atomistic-continuum mechanics method,” Master Thesis, National Tsing Hua University, Taiwan, 2006.
11 K. N. Chiang, C. Y. Chou, C. J. Wu, C. J. Huang, and M. C. Yew, “Analytical solution for estimation of temperature-dependent material properties of metals using modified Morse potential,” CMES-Comp. Model. Eng. Sci., vol.37, issue 1, pp.85-96, 2008.
12 B. Liu, Y. Huang, S. Qu, K. C. Hwang, “The atomic–scale finite element method,” Comput.Methods Appl. Mech. Engrg., vol.193, pp.1849-1864, 2004.
13 Y. R. Jeng and C. M. Tan, “Computer simulation of tension experiments of a thin film using an atomic model,” Phys. Rev. B, vol.65, pp.173107-1-173107-7, 2002.
14 V. B. Shenoy, R. Miller, E. B. Tadmor, D. Rodney, R. Phillips, and M. Ortiz, “An adaptive methodology for atomic scale mechanics: the quasicontinuum method,” J. Mec. Phy. of Solids, vol. 47, pp.611-642, 1999.
15 V. B. Shenoy, R. Miller, E. B. Tadmor, D. Rodney, R. Phillips, and M. Ortiz, “Quasicontinuum Models of Interfacial Structure and Deformation,” Appl. Phys. Let., vol.80, pp.742-745, 1998.
16 C. T. Lin, C. Y. Chou, C. J. Huang, and K. N. Chiang, “Validation of mechanical properties of the nanoscale single crystal IV-A group material by atomistic-continuum mechanics model,” The 30th Conference of Theoretical and Applied Mechanics, Taiwan, Dec. 15-16, 2006.
17 C. Y. Chou, “Investigation of mechanical properties of nanoscaled structure using atomistic-continuum mechanics method,” Master Thesis, National Tsing Hua University, Taiwan, 2005.
18 C. J. Huang, C. J. Wu, H. A. Teng, and K. N. Chiang, “A robust nano-mechanics approach for tensile and modal analysis using atomistic-continuum mechanics method,” Comput. Mater. Sci., vol.50, pp.2245-2248, 2011.
19 C. J. Huang, C. Y. Chou, C. J Wu, and K. N. Chiang, “Investigation of the mechanical properties of nanoscale metallic crystal structural with point defects,” ENS'07, Paris, France, Dec. 3-4, 2007.
20 T. S. Yang, Y. Cui, C. M. Wu, J. M. Lo, C. S. Chiang,W. Y. Shu, C. S. Yu, K. N. Chiang, and I. C. Hsu, “Determining the Zero-Force Binding Energetics of Intercalated DNA Complex Using Single Molecule Approach,” Chem. Phys. Chem, vol. 10, pp.2791-2794, 2009.
21 C. A. Yuan, “Link Investigation of nanoscaled structural mechanics using the clustered atomistic-continuum method,” Doctor Thesis, National Tsing Hua University, Taiwan, 2005.
22 C. N. Han, C. Y. Chou, and K. N. Chiang, “Investigation of dsDNA molecule mechanical behavior using atomistic continuum mechanics method,” NSTI Nanotech 2007, Santa Clara, USA, May. 20-24, 2007.
23 P. A. Packan, “Scaling Transistors into the Deep-Submicron Regime,” MRS Bulletin, vol. 25, pp.18-21, 2000.
24 C. K. Maiti and G. A. Armstrong, Applications of silicon-germanium heterostructure devices, Bristol : Institute of Physics Pub., 2001.
25 Y. Liang, W. D. Nix, P. B. Griffin, and J. D. Plummer, “Critical thickness enhancement of epitaxial SiGe film grown on small structures,” J. Appl. Phys. vol.97, pp.043519-1-043519-7, 2005.
26 P. M. Mooney, G. M. Cohen, J. O. Chu, and C. E. Murray, “Elastic strain relaxation in free-standing SiGe/Si structures,” Appl. Phys. Lett., vol.84, pp.1093-1095, 2004.
27 Y. C. Yeo, “Enhancing CMOS transistor performance using lattice-mismatched materials in source/drain regions,” Semicond. Sci. Technol., vol.22, pp.177-182, 2007.
28 D. J. Lockwood and J. M. Baribeau, “Strain-shift coefficients for phonons in Si1-xGex epilayers on Si,” Phys. Rev. B (Condensed Matter), vol.45, issue 15, pp.8565-8571, 1992.
29 X. C. Liu, M. Myronov, A. Dobbie, Van H. Nguyen, and D. R. Leadley, “Accuracy of thickness measurement for Ge epilayers grown on SiGe/Ge/Si(100) heterostructure by X-ray diffraction and reflectivity,” J. Vac. Sci. Technol. B, vol.29, pp.011010-1-011010-5, 2011.
30 K. Shintani, Y. Yano, and M. Abe “Molecular-dynamics study of SiGe epitaxy on a Si substrate,” Phys. Status Solidi, vol.3, pp.701-704, 2006.
31 R. Komanduri, N. Chandrasekaran, and L.M. Raff, “Molecular dynamic simulations of uniaxial tension at nanoscale of semiconductor materials for micro-electro-mechanical systems (MEMS) applications,” Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., vol.340, pp.58-67, 2003.
32 K. N. Chiang, C. H. Chang, and C. T. Peng, “Local-strain effects in Si/SiGe/Si islands on oxide,” Appl. Phys. Lett, vol.87, pp.191901-1-191901-3, 2005.
33 R. Hull, “Misfit strain accommodation in SiGe heterostructures,” Semiconduct Semimet, vol.56, pp.102-168, 1998.
34 J. Tersoff, “Modeling solid-state chemistry: Interatomic potentials for multicomponent systems,” Phys. Rev. B, vol.39, pp.5566-5568, 1989.
35 J. Tersoff, “Empirical interatomic potential for silicon with improved elastic properties,” Phys. Rev. B, vol.38, pp.9902-9905, 1988.
36 X. Chen, S. Zhang, D. A. Dikin, W. Ding, R. S. Ruoff, L. Pan, and Y. Nakayama, “Mechanics of a carbon nanocoil,” Nano Letters, vol.3, no.9, pp.1299-1304, 2003.
37 M. F. Yu, B. S. Files, S. Arepalli, and R. S. Ruoff, “Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties,” Phys. Rev. Lett., vol.84, pp.5552-5555, 2000.
38 A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, and M. M. J. Treacy, “Young’s modulus of single-walled nanotubes,” Phys. Rev. B, vol.58, pp.14013-14019, 1998.
39 K. I. Tserpesa and P. Papanikos, “Continuum modeling of carbon nanotube-based super-structures,” Compos. Struct., vol.91, pp.131-137, 2009.
40 T. Chang, “Torsional behavior of chiral single-walled carbon nanotubes is loading direction dependent,” Appl. Phys. Lett., vol.90, pp.201910-1-201910-3, 2007.
41 B. Liu, H. Jiang, Y. Huang, S. Qu, M. F. Yu, and K. C. Hwang, “Atomic-scale finite element method in multi-scale computation with applications to carbon nanotubes,” Phys. Rev. B, vol.72, pp.35435-1-35435-8, 2005.
42 B. Jalalahmadi and R. Naghdabadi, “Finite element modeling of single-walled carbon nanotubes with introducing a new wall thickness,” J. Phys.: Conf. Ser., vol.61, pp.497-502, 2006.
43 R. S. Ruoff, D. Qian, and W. K. Liu, “Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements,” C. R. Physique, vol.4, pp.993-1008, 2003.
44 M. Rossi and M. Meo, “On the estimation of mechanical properties of single-walled carbon nanotubes by using a molecular-mechanics based FE approach,” Compos. Sci. Technol., vol.69, pp.1394-1398, 2009.
45 C. W. Fan, Y. Y. Liu, and C. Hwu, “Finite element simulation for estimating the mechanical properties of multi-walled carbon nanotubes,” Appl. Phys. A-Mater. Sci. Process., vol.95, pp.819-831, 2009.
46 A. Kis, G. Csanyi, J. P. Salvetat, T. N. Lee, E. Couteau, A. J. Kulik, W. Benoit, J. Brugger, and L. Forro, “Reinforcement of single-walled carbon nanotube bundles by intertube bridging,” Nat. Mater., vol.3, pp.153-157, 2004.
47 A. F. Avila and G. S. R. Lacerda, “Molecular mechanics applied to single walled carbon nanotubes,” Mat. Res., vol.11, pp.325-333, 2008.
48 P. J. F. Harris and S. C. Tsang, “Encapsulating uranium in carbon nanoparticles using a new technique,” Carbon, vol.36, pp.1859-1861, 1998.
49 M. K. Yeh, N. H. Tai, and J. H. Liu, “Mechanical behavior of phenolic-based composites reinforced with multi-walled carbon nanotubes,” Carbon, vol.44, issue 1, pp.1-9, 2006.
50 M. K. Yeh and T. H. Hsieh, “Dynamic properties of sandwich beams with MWNT/polymer nanocomposites as core materials,” Compos. Sci. Technol., vol.68, issue14, pp.2930-2936, 2008.
51 N. H. Tai, M. K. Yeh, and T. H. Peng, “Experimental study and theoretical analysis on the mechanical properties of SWNTs/phenolic composites,” Compos. Pt. B-Eng., vol.39, issue 6, pp.926-932, 2008.
52 W. Zhou, J. Vavro, C. Guthy, K. I. Winey, J. E. Fischer, L. M. Ericson, S. Ramesh, R. Saini, V. A. Davis, C. Kittrell, M. Pasquali, R. H. Hauge, and R. E. Smalley, “Single wall carbon nanotube fibers extruded from super-acid suspensions: Preferred orientation, electrical, and thermal transport,” J. Appl. Phys., vol.95, pp.649-655, 2004.
53 J. E. Fischer, W. Zhou, J. Vavro, M. C. Llaguno, C. Guthy, R. Haggenmueller, M. J. Casavant, D. E. Walters, and R. E. Smalley, “Magnetically aligned single wall carbon nanotube films: Preferred orientation and anisotropic transport properties,” J. Appl. Phys., vol.93, pp.2157-2163, 2003.
54 E. T. Thostenson and T. W. Chou, “On the elastic properties of carbon nanotube-based composites: modelling and characterization,” J. Phys. D: Appl. Phys., vol.36, pp.573-582, 2003.
55 M. Homayonifara and S. M. Zebarjad, “Investigation of the effect of matrix volume fraction on fiber stress distribution in polypropylene fiber composite using a simulation method,” Mater. Des., vol.28, issue 4, pp.1386-1392, 2007.
56 C. D. Mote Jr., “Global-local finite element,” Intl, J. Numer. Methods Eng., vol.3, pp.565-574, 1971.
57 A. S. D. Wang and F. W. Corssman, “Some new results on edge effect in symmetric composite laminates,” J. Composite Mat., vol.11, pp.92-106, 1977.
58 S. B. Dong, “Global-local finite element methods,” State-of-the-Art Surveys on Finite Element Technology, ASME, pp.451-474, New York, 1983.
59 R.C. Hibbeler, Mechanics of materials, Pearson Prentice Hall Inc., 6th ed., 2007.
60 O. H. Griffin and M. A. Vidussoni, Global/local finite element analysis of composite materials, Intl, Conf. on computer aided design in composite material technology, Springer, Berlin, 1988.
61 S. R. Voleti, N. Chandra, and J. R. Miller, “Global-local analysis of large-scale composite structures using finite element,” Comput. Struct., vol.58, issue 3, pp.453-464, 1996.
62 T. Belytschko and S. P. Xiao, “Coupling methods for continuum model with molecular model,” Int. J. Multi-scale Comput. Eng., vol.1, issue 1, pp.115-126, 2003.
63 S. P. Xiao and T. Belytschko, “A bridging domain method for coupling continua with molecular dynamics,” Comput. Meth. Appl. Mech. Eng., vol.193, pp.1645-1669, 2004.
64 D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, and S. B Sinnott, “A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons,” Phys.: Condens. Matter, vol.14, pp.783-802, 2002.
65 C. F. Conwell and L. T. Wille, “Elastic properties of single-walled carbon nanotubes in compression,” Solid State Commun., vol.101, pp.555-558, 1997.
66 T. C. Chang and H. J. Gao, “Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model,” J. Mech. Phys. Solids, vol.51, pp.1059-1074, 2003.
67 J. M. Haile, Molecular Dynamics Simulation Elementary Methods, John Wiley & Sons, Inc., 1997.
68 R. D. Cook, D. S. Malkus, M. E. Plesha, and R. J. Witt, Concepts and applications of finite element analysis, Wiley New York, 2002.
69 ANSYS User’s manual. (ANSYS Revision 5.2, vol.3, Elements.SAS IP Inc, 1995)
70 S. S. Rao, Mechanical vibrations, 4th ed., Singapore : Pearson/Prentice Hall, 2005.
71 P. Ciarlet, “Lecture note on the finite element method,” TATA institute of fundamental research, Bombay, 1975.
72 N. Kikuchi and J. T. Oden, Contact problem in elasticity: a study of variational inequalities and finite element methods, SIAM, Philadelphia, 1988.
73 J. Wloka, Partial differential equations, Cambridge University Press, 1992.
74 D. Braess, Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, Leiden: Cambridge University Press, 2007.
75 J. L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications, Berlin, New York, Springer-Verlag, 1972.
76 F. Treves, Basic linear partial differential equations, New York, Academic Press, 1975.
77 A. K. Noor, “Global-local methodologies and their application to non-linear analysis,” Finite Elem. Anal. Des., vol.2, issue 4, pp.333-346, 1986.
78 W. Bangerth and R. Rannacher, Adaptive finite element methods for differential equations, Boston, MA, Birkhauser Verlag, 2003.
79 Q. H. Qin, Macro-micro theory on multi-field coupling behavior of heterogeneous materials, Berlin, Higher Education Press, London, Springer, 2008.
80 S. Nemat-Nasser and M. Hori, Micromechanics: overall properties of heterogeneous materials, Amsterdam, New York, North-Holland, 1993.
81 Z. Hashin, “Analysis of composite materials-A survey,” J. Appl. Mech., vol.50, issue 3, pp.481-505, 1983.
82 K. S.Havner, “A discrete model for the prediction of subsequent yield surfaces in polycrystalline plasticity,” Int. J. Solids Structures, vol.7, issue 7, pp.719-730, 1971.
83 K. Brunner, “Si/Ge nanostructures,” Rep. Prog. Phys., vol.65, pp.27-72, 2002.
84 E. Kasper, H. J. Herzog, and H. Kibbel, “A one dimensional SiGe superlattice grown by UHV Epitaxy,” Appl. Phys., vol.8, pp.199-205, 1975.
85 J. C. Bean, L. C. Feldman, A. T. Fiory, S. Nakahara, and I. K. Robinson, “?Ge_x Si?_(1-x)/Si straind layer superlattice growth by molecular beam Epitaxy,” J. Vac. Sci. Technol. A, vol.2, pp.436-440, 1984.
86 J. Matthews, S. Mader, and T. Light, “Accommodation of misfit across the interface between crystals of semiconducting elements or compounds,” J. Appl. Phys., vol.41, pp.3800-3804, 1970.
87 D. C. Houghton, “Strain relaxation kinetics in Si_(1-x) Ge_x/Si heterostructures,” J. Appl. Phys., vol. 70, pp.2136-2151, 1991.
88 B. W. Dodson and J. Y. Tsao, “Relaxation of strained-layer semiconductor structures via plastic flow,” Appl. Phys. Lett., vol.51, pp.1325-1327, 1987.
89 J. W. Matthews and A. E. Blakeslee, “Defects in epitaxial multilayers: III. Preparation of almost perfect multilayers,” J. Cryst. Growth, vol.32, issue 2, pp.265-273, 1976.
90 V. T. Bublik, S. S. Gorelik, A. A. Zaitsev, and A. Y. Polyakov, “Calculation of the Binding Energy of Ge-Si Solid Solution,” Physica Status Solidi (b), vol.65, issue 2, pp.K79-K84, 1974.
91 M. W. Hyer, Stress analysis of fiber-reinforced composite materials, 1st ed., Boston, Mass, WCB McGraw-Hill, 1998.
92 I. M. Daniel, Engineering mechanics of composite materials, 2nd ed., New York, Oxford University Press, 2006.
93 R. F. Gibson, Principles of composite material mechanics, 2nd ed., New York, CRC Press, 2007.
94 R. M. Jones, Mechanics of composite materials, 2nd ed., Philadelphia, PA, Taylor & Francis, 1999.
95 A. R. M. Laurea, “Finite Element Investigations on the Microstructure of Composite Materials,” Doctor Thesis, The University of Nottingham, 2007.
96 R. Assaker, Multi-Scale Modeling of Composite Materials and Structures with DIGIMAT to ANSYS, e-Xstream engineering, pp.1-12, 2009.
97 C. T. Lin and K. N. Chiang, “From atomic-level lattice structure to estimate the Si mechanical bulk behavior using the atomistic-continuum mechanics,” Key Engineering Materials, vol.334-335, pp.281-284, 2007.
98 K. Sato, T. Yoshioka, T. Ando, M. Ahilida, and T. Kawabata, “Tensile testing of silicon film having different crystallographic orientation carrier out on a silicon chip,” Sens. Actuator A-Phys., vol.70, pp.148-152, 1998.
99 T. Yi, L. Lu, and C. J. Kim, “Microscale material testing of single crystalline silicon: process effects on surface morphology and tensile strength,” Sens. Actuator A-Phys., vol.83, pp.172-178, 2000.
100 T. Ghani, M. Armstrong, C. Auth, M. Bost, P. Charvat, G. Glass, T. Hoffmann, K. Johnson, C. Kenyon, J. Klaus, B. McIntyre, K. Mistry, A. Murthy, J. Sandford, M. Silberstein, S. Sivakumar, P. Smith, K. Zawadzki, S. Thompson, and M. Bohr, “A 90nm high volume manufacturing logic technology featuring novel 45nm gate length strained silicon CMOS transistors,” Electron Devices Meeting, 2003. IEDM '03 Technical Digest. IEEE International, Hillsboro, OR, USA, 8-10 Dec. 2003.
101 S. L. Toh, K. P. Loh, C. B. Boothroyd, K. Li, C. H. Ang, and L. Chan, “Strain analysis in silicon substrates under uniaxial and biaxial stress by convergent beam electron diffraction,” J. Vac. Sci. Technol. B, vol.23, pp.940-946, 2005.
102 C. Himcinschi, R. Singh, I. Radu, A. P. Milenin, W. Erfurth, M. Reiche, U. Gosele, S. H. Christiansen, F. Muster, and M. Petzold, “Strain relaxation in nanopatterned strained Si round pillars,” Appl. Phys. Lett., vol.90, pp.021902-1-021902-3, 2007.
103 M. S. Dresselhaus, G. Dresselhaus, and R. Saito, “Physics of carbon nanotubes,” Carbon, vol.33, pp.883-891, 1995.
104 P. Papanikos, D. D. Nikolopoulos, and K. I. Tserpes, “Equivalent beams for carbon nanotubes,” Comput. Mater. Sci., vol.43, issue 2, pp.345-352, 2008.
105 C. A. Yuan and K. N. Chiang, “Micro to macro thermo-mechanical simulation of wafer level packaging,” ASME trans. on Journal of Electronic Packaging, vol.125, no.4, pp.576-581, 2003.
106 E. Pop, D. Mann, Q. Wang, K. Goodson, and H. Dai, “Thermal conductance of an individual single-wall carbon nanotube above room temperature,” Nano Lett., vol.6, pp.96-100, 2006.
107 Y. Zhang, T. Ichihashi, E. Landree, F. Nihey, and S. Iijima, “Heterostructures of single-walled carbon nanotubes and carbide nanorods,” Science, vol.285, issue 5434, pp.1719-1722, 1999.
108 S. Bandow, G. Chen, G. U. Sumanasekera, R. Gupta, M. Yudasaka, S. Iijima, and P. C. Eklund, “Diameter-selective resonant Raman scattering in double-wall carbon nanotubes,” Phys. Rev. B, vol.66, pp.075416-1-075416-8, 2002.
109 M. Zhang, K. R. Atkinson, and R. H. Baughman, “Multifunctional carbon nanotubes yarns by downsizing an ancient technology,” Science, vol.306, pp.1358-1361, 2004.
110 Y. S. Song and J. R. Youn, “Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites,” Carbon, vol. 43, pp. 1378-1385, 2005.
111 J. Gao, M. E. Itkis, A. Yu, E. Bekyarova, B. Zhao, and R. C. Haddon, “Continuous spinning of a single-walled carbon nanotube-nylon composite fiber,” J. Am. Chem. Soc., vol.127, issue 11, pp.3847-3854, 2005.
112 B. D. Agarwal, Analysis and performance of fiber composites, 3rd ed., Hoboken, N.J., John Wiley, 2006.
113 W. Zhou, J. Vavro, C. Guthy, K. I. Winey, J. E. Fischer, L. M. Ericson, S. Ramesh, R. Saini, V. A. Davis, C. Kittrell, M. Pasquali, R. H. Hauge, and R. E. Smalley, “Single wall carbon nanotube fibers extruded from super-acid suspensions: Preferred orientation, electrical, and thermal transport,” J. Appl. Phys., vol.95, pp.649-655, 2004.
114 R. Christensen, “A critical evaluation for a class of micro-mechanics models,” J. Mech. Phys. Solids, vol.38, issue 3, pp.379-404, 1990.
115 R. Christensen, “Solutions for effective shear properties in three phase sphere and cylinder models,” J. Mech. Phys. Solids, vol.27, issue 4, pp.315-330, 1979.
116 R. Christensen, “Effective properties of composite materials containing voids,” Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci., vol.440, no.1909, pp.461-473, 1993.
117 D. Gross, Fracture mechanics with an introduction to micromechanics, 2nd ed., Berlin, Heidelberg Springer Berlin Heidelberg, 2011.
118 T. Hertel, R. Walkup, and P. Avouris, “Deformation of carbon nanotubes by surface van der Waals forces,” Phys. Rev. B, vol.58, pp.13870-13873, 1998.
119 K. N. Chiang, C. A. Yuan, C. N. Han, C. Y. Chou, and Y. Cui, “Mechanical characteristic of ssDNA/dsDNA molecule under external loading,” Appl. Phys. Lett., vol.88, issue 2, pp.23902-1-23902-3, 2006.
120 M. Meo and M. Rossi, “Prediction of Young's modulus of single wall carbon nanotubes by molecular-mechanics based finite element modelling,” Compos. Sci. Technol., vol.66, pp.1597-1605, 2006.
121 J. H. Lee, R. C. Vitor, S. G. Douglas, E. K. Mikhail, Z. Mei, O. D. Socrates, and H. B. Ray, “Sign change of Poisson's ratio for carbon nanotube sheets,” Science, vol.320, pp.504-507, 2008.
122 C. J. Wu, C. Y. Chou, C. N. Han, and K. N. Chiang, “Simulation and validation of CNT mechanical properties the future interconnection Material,” ECTC, Reno, USA, pp.447-452, May 30-Jun. 1, 2007.
123 O. Suekane, A. Nagataki, H. Mori, and Y. Nakayama, “Static friction force of carbon nanotube surfaces,” Appl. Phys. Express, vol.1, pp.64001-1-64001-3, 2008.
124 H. Y. Song, L. F. Li, and F. Feng, “Torsional behavior of carbon nanotubes with abnormal interlayer distances,” Appl. Phys. Lett., vol.90, pp.201910-1-201910-5, 2009.
125 K. J. Ziegler, U. Rauwald, Z. Gu, F. Liang, W. E. Billups, R. H. Hauge, and R. E. Smalley, “Statistically accurate length measurements of single-walled carbon nanotubes,” J. Nanosci Nanotechnol., vol.7, issue 8, pp.1-5. 2007.
126 S. Wang, Z. Liang, B. Wang, and C. Zhang, “Statistical characterization of single-wall carbon nanotube length distribution,” Nanotechnology, vol.17, no.3, pp.634-639, 2006.
127 E. L. Crow and K. Shimizu, Lognormal distributions: theory and applications, Marcel Dekker Inc. 1988.
128 T. S. Gates, G. M. Odegard, S. J. V. Frankland, and T. C. Clancy, “Computational materials: multi-scale modeling and simulation of nanostructured materials,” Compos. Sci. Technol., vol. 65, issues 15-16, pp.2416-2434, 2005.
129 J. Zhang and M. Tanakaa, “Systematic study of thermal properties of CNT composites by the fast multipole hybrid boundary node method,” Eng. Anal. Bound. Elem., vol.31, issue 5, pp.388-401, 2007.
130 C. A. Cooper, D. Ravicha, D. Lipsb, J. Mayerb, and H. D. Wagnera, “Distribution and alignment of carbon nanotubes and nanofibrils in a polymer matrix,” Compos. Sci. Technol., vol.62, issue 7-8, pp.1105-1112, 2002.
131 F. L. Matthews, G. A. O. Davies, D. Hitchings, and C. Soutix, Finite element modelling of composite materials and structures, 1st ed., Boca Raton, FL: CRC Press; Cambridge, England, Woodhead Pub., 2000.
132 P. K. Mallick, Fiber-reinforced composites: materials, manufacturing, and design, 1st ed., New York: M. Dekker, 1988.
133 K. Friedrich, S. Fakirov, and Z. Zhang, Polymer composites: from nano-to macro-scale, New York: Springer, 2005.
134 Y. Gogotsi, Nanotubes and nanofibers, 1st ed., Boca Raton, FL: CRC Taylor & Francis, 2006.
135 S. K. Georgantzinos and N. K. Anifantis, “Vibration analysis of multi-walled carbon nanotubes using a spring-mass based finite element model,” Comput. Mater. Sci., vol.47, pp.168-177, 2009.
136 J. P. Dismukes, L. Ekstrom, and R. J. Paff, “Lattice parameter and density in germanium-silicon alloys,” J. Phys. Chem., vol.68, pp.3021-3027, 1964.
137 W. C. Swope and H. C. Andersen, “?10?^6-Particle Molecular-Dynamics study of homogeneous nucleation of crystals in a supercooled atomic liquid,” Phys. Rev. B, vol.40, pp.7042-7054, 1990.
138 C. H. Chang, “Analysis and Design of Nanoscale Strained Silicon,” Master Thesis, National Tsing Hua University, Taiwan, 2004.
139 T.?V. Sreekumar, T. Liu, B.?G. Min, H. Guo, S. Kumar, R.?H. Hauge, and R.?E. Smalley, “Polyacrylonitrile single-walled carbon nanotube composite fibers,” Adv. Mater., vol.16, issue 1, pp.58-61, 2004.
140 C. P. Wong, K. S. Moon, and Y. Li, Nano-Bio- Electronic, Photonic and MEMS Packaging, Springer US, 2010.
141 Q. Yang and Q. H. Qin, “Modelling the macroscopic elasto-plastic properties of unidirectional composites reinforced by fibre bundles under transverse tension and shear loading,” Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., vol. 344, pp.140-145, 2003.
142 Q. Yang and Q. H. Qin, “Micro-mechanical analysis of composite materials by BEM,” Eng. Anal. Bound. Elem., vol.28, pp.919-926, 2004.
143 W. Voigt, “On the relation between the elasticity constants of isotropic bodies,” Ann. Phys. Chem., vol.274, pp.573-587, 1889.
144 A. Reuss, “Determination of the yield point of polycrystals based on the yield condition of single crystals,” Math. Mech., vol.9, pp.49-58, 1929.
145 C. T. Lin, “Investigation of nanoscale single crystal VI-A group mechanical properties using atomistic finite element method (AFEM),” Doctor Thesis, National Tsing Hua University, Taiwan, 2006.
146 C. J. Wilson, A. Oremggi, and M. Narbutovskih, “Fracture testing of silicon microcantilever beams,” J. Appl. Phys., vol.79, issue 5, pp.2386-2393, 1996.
147 O. Moutanabbir, M. Reiche, N. Zakharov, F. Naumann, and M. Petzold, “Observation of free surface-induced bending upon nanopatterning of ultrathin strained silicon layer,” Nanotechnology, vol.22, pp.045701-1-045701-5, 2011.
148 P. M. Ajayan and O. Z. Zhou, “Applications of carbon nanotubes,” Top Appl. Phys., vol.80, pp.391-425, 2001.
149 Z. G. Pandermarakis, G. Spathis, and G. Tsamasphyros, “Constructing a modulus map for linear elastic composites: The case of rigid reinforcements,” Polym. Compos., vol.28, issue 5, pp.593-604, 2007.
150 I. M. Daniel, Engineering mechanics of composite materials, 2nd ed., New York, Oxford University Press, 2006.
151 J. E. Fischer, W. Zhou, J. Vavro, M. C. Llaguno, C. Guthy, R. Haggenmueller, M. J. Casavant, D. E. Walters, and R. E. Smalley, “Magnetically aligned single wall carbon nanotube films: Preferred orientation and anisotropic transport properties,” J. Appl. Phys., vol.93, pp.2157-2163, 2003.
152 E. T. Thostenson and T. W. Chou, “On the elastic properties of carbon nanotube-based composites: modelling and characterization,” J. Phys. D: Appl. Phys., vol.36, pp.573-582, 2003.