研究生: |
陳昱伶 Chen, Yu-Ling |
---|---|
論文名稱: |
台灣蝴蝶蘭在不同組織及不同逆境下蛋白質之PaSUMO修飾 The levels of PaSUMO conjugations in different tissues of Phalaenopsis aphrodite and the changes of SUMOylation responded to stresses |
指導教授: |
林彩雲
Lin, Tsai-Yun |
口試委員: |
楊長賢
褚志斌 林彩雲 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 65 |
中文關鍵詞: | 蝴蝶蘭 、SUMO蛋白 、SUMO化修飾 、低溫逆境 |
外文關鍵詞: | Phalaenopsis aphrodite, SUMO, SUMOylation, Cold stress |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
SUMO蛋白質普遍存在於許多真核生物中,它經由一連串的酵素反應,與目標蛋白形成可逆的共價鍵結,進而改變目標蛋白的穩定性、位置及蛋白質與蛋白質間的交互作用,最後影響整體的生化反應。在植物中,SUMO修飾會參與訊息、發育、賀爾蒙反應以及生物和非生物性的逆境調控,前人研究發現SUMO化蛋白質累積在不同植物組織及不同環境逆境下。本研究目的在探討植物在不同環境逆境下的SUMO化修飾,為達成目標,我們利用大腸桿菌生產PaSUMO重組蛋白並製作成抗體。由蛋白質印跡的結果發現,在低溫、高溫、乾燥、高鹽及離層酸處理下,僅低溫逆境有大量的高分子量蛋白被SUMO化修飾。在熱帶生長的台灣蝴蝶蘭 aphrodite,SUMO化修飾的重要性可能是在低溫逆境下穩定蛋白質以免降解。在不同的組織中,半開的花有最多的SUMO化修飾蛋白,SUMO化修飾可能也參與花的發育。
SUMO protein is conserved in all eukaryotic organisms. SUMOylation involves a cascade of enzymatic reactions which alters target protein stability, sub-cellular localization, and protein-protein interactions through the reversible covalent attachment and affects the overall biochemical reaction chains. SUMOylation/ deSUMOylation may function in concert to regulate signaling, development, hormonal responses, biotic and abiotic stress responses in plants. SUMOylated proteins were found to accumulate in various plant tissues under different environmental stress. This thesis aimed to study the role of SUMO and SUMOylation in plants under abiotic stress. To fulfill our purpose, the PaSUMO recombinant protein was produced in Escherichia coli to raise a polyclonal antibody for SUMO detection. Upon subject to cold, heat, drought, salinity and ABA treatments, only cold stress induced accumulation of high molecular weight SUMOylated proteins in our protein blots. The induced SUMOylation in the tropical plant Phalaenopsis aphrodite under cold stress may lead to protein stabilization and protection from degradation. Among all the tissues examined, the half-opened flower displayed the highest level of PaSUMO conjugates. Our result also suggests that SUMOylation process may participate in floral transition.
陳文輝. 蝴蝶蘭的品種改良. 科學發展. 第351期. 2002年3月.
Bayer P, Arndt A, Metzger S, Mahajan R, Melchior F, Jaenicke R, Becker J. (1998) Structure determination of the small ubiquitin-related modifier SUMO-1. J Mol Biol., 280, 275-286.
Chaikam V., Karlson D. T. (2010) Response and transcriptional regulation of rice SUMOylation system during development and stress conditions. BMB Rep., 43 (2), 103-9.
Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M, Zhu JK., (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev., 17 (8), 1043-54.
Chinnusamy V., Zhu J., and Zhu, J.-K., (2006) Gene regulation during cold acclimation in plants. Physiol. Plant., 126, 52-61.
Chinnusamy V., Zhu J., Zhu J.K., (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci., 12 (10), 444-451.
Chinnusamy V., Zhu J.K., Sunkar R., (2010) Gene regulation during cold stress acclimation in plants. Methods Mol Biol., 639, 39-55.
Chosed R., Mukherjee S., Lois L. M., Orth K. (2006) Evolution of a signalling system that incorporates both redundancy and diversity: Arabidopsis SUMOylation. Biochem. J., 398, 521-529.
Colby T., Matthäi A., Boeckelmann A., Stuible H-P. (2006) SUMOconjugating and SUMO-deconjugating enzymes from Arabidopsis. Plant Physiol., 142, 318-332.
Conti L., Price G., O'Donnell E., Schwessinger B., Dominy P., Sadanandom A. (2008) Small ubiquitin-like modifier proteases OVERLY TOLERANT TO SALT1 and -2 regulate salt stress responses in Arabidopsis. Plant Cell, 20, 2894-2908.
Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J. 33 (4), 751-763.
Dong CH, Agarwal M, Zhang Y, Xie Q, Zhu JK., (2006) The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc Natl Acad Sci U S A., 103 (21), 8281-8286.
Geiss-Fridelander R., Melchior F. (2007) Concepts in sumoylation: a decade on. Nat. Rev. Mol. Cell Biol., 8, 947-956.
Grillari J, Grillari-Voglauer R, Jansen-Dürr P. (2010) Post-translational modification of cellular proteins by ubiquitin and ubiquitin-like molecules: role in cellular senescence and aging. Adv Exp Med Biol., 694, 172-96.
Hochstrasser M. (2009) Origin and function of ubiquitin-like proteins. Nature, 458, 422-429.
Huang WC, Ko TP, Li SS, Wang AH. (2004) Crystal structures of the human SUMO-2 protein at 1.6 A and 1.2 A resolution: implication on the functional differences of SUMO proteins. Eur. J. Biochem., 271, 4114-4122.
Huang L. Yang S., Zhang S., Liu M., Lai J., Qi Y., Shi S., Wang J., Wang Y., Xie Q., Yang C. (2009) The Arabidopsis SUMO E3 ligase AtMMS21, a homologue of NSE2/MMS21, regulates cell proliferation in the root. Plant J., 60, 666-678.
Ishida T., Fujiwara S., Miura K., Stacey N., Yoshimura M., Schneider K., Adachi S., Minamisawa K., Umeda M., Sugimoto K. (2009) SUMO E3 ligase HIGH PLOIDY2 regulates endocycle onset and meristem maintenance in Arabidopsis. Plant Cell, 21, 2284–2297.
Johnson E. S. (2004) Protein modification by SUMO. Annu. Rev. Biochem., 73, 355-382.
Kerscher O., Felberbaum R., Hochstrasser M. (2006) Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu. Rev. Cell Dev., 22, 159-180.
Komatsu S., Yang G., Khan M., Onodera H., Toki S., Yamaguchi M., (2007) Over-expression of calcium-dependent protein kinase 13 and calreticulin interacting protein 1 confers cold tolerance on rice plants. Mol. Genet. Genomics., 227, 713-723.
Kurepa J., Walker J.M., Smalle J., Gosink M.M., Davis S.J., Durham T.L., Sung D. Y., Vierstra R.D. (2003) The small ubiquitn-like modifier (SUMO) protein modification system in Arabidopsis. J. Biol. Chem., 278, 6862-6872.
Lawrence SD, Dervinis C, Novak N, Davis JM (2006) Wound and insect herbivory responsive genes in poplar. Biotech. Lett., 28, 1493-1501.
Lissarre M, Ohta M, Sato A, Miura K. (2010) Cold-responsive gene regulation during cold acclimation in plants. Plant Signal Behav., 5 (8), 948-52.
Lois L.M., Lima C.D., Chua N. H. (2003) Small ubiquitin-like modifier modulates abscisic acid signaling in Arabidopsis. Plant Cell, 15, 1347-1359.
Melchior F. (2000) SUMO-nonclassical ubiquitin. Annu. Rev. Cell Dev. Biol., 16, 591-626.
Miura K., Rus A., Sharkhuu A., Yokoi S., Karthikeyan A. S., Raghothama K. G., Baek D., Koo Y. D., Jin J.B., Bressan R.A. (2005) The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proc. Natl. Acad. Sci. USA, 102, 7760-7765.
Miura K, Jin JB, Lee J, Yoo CY, Stirm V, Miura T, Ashworth EN, Bressan RA, Yun DJ, Hasegawa PM., (2007) SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell, 19, 1403-1414.
Miura K., Jin J. B., Hasegawa P. M. (2007) SUMOylation, a post-translational regulatory process in plants. Curr. Opin. Plant Biol., 10, 495-502.
Miura K., Lee J., Jin J.B., Yoo C. Y., Miura T., Hasegawa P. M. (2009) SUMOylation of ABI5 by the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling. Proc. Natl. Acad. Sci. USA, 106, 5418-5423.
Miura K., Hasegawa P. M. (2010) SUMOylation and other ubiquitin-like posttranslational modifications in plants. Trends Cell Biol., 20, 223-232.
Miura K, Ohta M, Nakazawa M, Ono M, Hasegawa PM., (2011) ICE1 Ser403 is necessary for protein stabilization and regulation of cold signaling and tolerance. Plant J., 67 (2), 269-79.
Miller M.J., Barrett-Wilt G.A., Hua Z., Vierstra R.D. (2010) Proteomic analyses identify a diverse array of nuclear processes affected by small ubiquitin-like modifier conjugation in Arabidopsis. Proc. Natl. Acad. Sci. USA, 107 (38), 16512-16517.
Murtas G., Reeves P. H., Fu Y-F., Bancroft I., Dean C., Coupland G. (2003) A nuclear protease required for flowering-time regulation in Arabidopsis reduces the abundance of SMALL UBIQUITIN-RELATED MODIFIER conjugates. Plant Cell, 15, 2308-2319.
Muthuswamy S., Meier I. (2011) Genetic and environmental changes in SUMO homeostasis lead to nuclear mRNA retention in plants. Planta. 233 (1), 201-208.
Nakamura J, Yuasa T, Huong TT, Harano K, Tanaka S, Iwata T, Phan T, Iwaya-Inoue M (2011) Rice homologs of inducer of CBF expression (OsICE) are involved in cold acclimation. Plant Biotechnology, 28, 303-309.
Novatchkova M., Budhiraja R., Coupland G., Eisenhaber F., Bachmair A. (2004) SUMO conjugation in plants. Planta, 220, 1-8.
Ohashi-Ito K, Bergmann DC. (2006) Arabidopsis FAMA controls the final proliferation/differentiation switch during stomatal development. Plant Cell, 18, 2493-505.
Pillitteri LJ, Sloan DB, Bogenschutz NL, Torii KU. (2007) Termination of asymmetric cell division and differentiation of stomata. Nature, 445, 501-5.
Reed J. M., Dervinis C., Morse A. M., Davis J. M. (2010) The SUMO conjugation pathway in Populus: genomic analysis, tissue-specific and inducible SUMOylation and in vitro de-SUMOylation. Planta, 232, 51-59.
Saracco S.A., Miller M.J., Kurepa J., Vierstra R.D. (2007) Genetic analysis of SUMOylation in Arabidopsis: Conjugation of SUMO1 and SUMO2 to nuclear proteins is essential. Plant Physiol., 145, 119-134.
Saitoh H., Hinchey J. (2000) Functional heterogeneity of small ubiquitin-related protein modifier SUMO-1 versus SUMO-2/3. J. Biol. Chem., 275, 6252-6258.
Shinozaki K., Yamaguchi-Shinozaki K., Seki M. (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr. Opin. Plant Biol., 6, 410-417.
Sung D. Y., Guy C. L. (2003) Physiological and Molecular Assessment of Altered Expression of Hsc70-1 in Arabidopsis. Evidence for Pleiotropic Consequences. Plant Physiology, 132, 979-987.
Thomashow M.F., (1999) Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol., 50, 571-599.
Ulrich HD., (2005) Mutual interactions between the SUMO and ubiquitin systems: a plea of no contest. Trends Cell Biol., 15, 525-532.
Vergnolle C., Vaultier M.N., Taconnat L., Renou J.P., Kader J.C., Zachowski A., Ruelland E., (2005) The cold-induced early activation of phospholipase C and D pathways determines the response of two distinct clusters of genes in Arabidopsis cell suspensions. Plant Physiol., 139, 1217-1233.
Wang Y, Jiang CJ, Li YY, Wei CL, Deng WW. (2012) CsICE1 and CsCBF1: two transcription factors involved in cold responses in Camellia sinensis. Plant Cell Rep., 31 (1), 27-34.
Williams M.E., Torabinejad J., Cohick E., Parker K., Drake E.J., Thompson J.E., Hortter M., Dewald D.B., (2005) Mutations in the Arabidopsis phosphoinositide phosphatase gene SAC9 lead to overaccumulation of PtdIns(4,5)P2 and constitutive expression of the stress-response pathway. Plant Physiol., 138, 686-700.
Xu XM, Rose A, Muthuswamy S, Jeong SY, Venkatakrishnan S, Zhao Q, Meier I. (2007) NUCLEAR PORE ANCHOR, the Arabidopsis homolog of Tpr/Mlp1/Mlp2/megator, is involved in mRNA export and SUMO homeostasis and affects diverse aspects of plant development. Plant Cell, 19 (5), 1537-48.