研究生: |
凃育誠 Tu, Yu-Cheng |
---|---|
論文名稱: |
量子場論的糾纏熵 Entanglement entropy in quantum field theory |
指導教授: |
朱創新
Chu, Chong-Sun |
口試委員: |
溫文鈺
Wen, Wen-Yu 張維甫 Chang, We-Fu |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 53 |
中文關鍵詞: | 糾纏熵 、偽糾纏熵 |
外文關鍵詞: | Entanglement entropy, Pseudo entropy |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本文中,我們將回顧量子場論中的糾纏熵。我們想通過一些物理例子
給出糾纏熵的詳細計算。此外,我們還尋找了糾纏熵的推廣模型,如偽熵,
並提供了逐步計算方法以得到結果並嘗試了解其背後的意義
In this thesis, we will give an overview of entanglement entropy (EE) in quantum field theory. We aim to present detailed calculations of EE in several physical examples. In addition, we will review generalized models of entanglement entropy, such as pseudo entropy, and provide a step-by-step calculation method to obtain the entropy.
[1] Yoshifumi Nakata, Tadashi Takayanagi, Yusuke Taki, Kotaro Tamaoka, and Zixia Wei. New holographic generalization of entanglement entropy. Physical Review D, 103(2):026005, 2021.
[2] Tatsuma Nishioka, Tadashi Takayanagi, and Yusuke Taki. Topological pseudo entropy. Journal of High Energy Physics, 2021(9):1–44, 2021.
[3] Ali Mollabashi, Noburo Shiba, Tadashi Takayanagi, Kotaro Tamaoka, and Zixia Wei. Aspects of pseudoentropy in field theories. Physical Review Research, 3(3):033254, 2021.
[4] Mark Srednicki. Entropy and area. Physical Review Letters, 71(5):666, 1993.
[5] Rodolfo Reis Soldati. Entanglement entropy in quantum field theory. 2019.
[6] Jacob D Bekenstein. Black holes and the second law. In JACOB BEKENSTEIN: The Conservative Revolutionary, pages 303–306. World Scientific, 2020.
[7] Christoph Holzhey, Finn Larsen, and Frank Wilczek. Geometric and renormalized entropy in conformal field theory. Nuclear physics b, 424(3):443–467, 1994.
[8] John Cardy and Erik Tonni. Entanglement hamiltonians in two-dimensional conformal field theory. Journal of Statistical Mechanics: Theory and Experiment, 2016(12):123103, 2016.
[9] Ali Mollabashi, Noburo Shiba, Tadashi Takayanagi, Kotaro Tamaoka, and Zixia Wei. Pseudo-entropy in free quantum field theories. Physical Review Letters, 126(8):081601, 2021.
[10] Yoshifumi Nakata, Tadashi Takayanagi, Yusuke Taki, Kotaro Tamaoka, and Zixia Wei. Holographic pseudo entropy. arXiv preprint arXiv:2005.13801, 2020.
[11] Andrew Gould. Classical derivation of black-hole entropy. Physical Review D, 35(2):449, 1987.
[12] Pasquale Calabrese and John Cardy. Entanglement entropy and conformal field theory. Journal of physics a: mathematical and theoretical, 42(50):504005, 2009.
[13] John L Cardy, Olalla A Castro-Alvaredo, and Benjamin Doyon. Form factors of branch-point twist fields in quantum integrable models and entanglement entropy. Journal of Statistical Physics, 130:129–168, 2008.
[14] Horacio Casini and Marina Huerta. Entanglement entropy in free quantum field theory. Journal of Physics A: Mathematical and Theoretical, 42(50):504007, 2009. 51
[15] Jurjen F Koksma, Tomislav Prokopec, and Michael G Schmidt. Entropy and correlators in quantum field theory. Annals of Physics, 325(6):1277–1303, 2010.
[16] Temple He, Javier Magan, and Stefan Vandoren. Entanglement entropy in lifshitz theories. SciPost Physics, 3(5):034, 2017.
[17] M Reza Mohammadi Mozaffar and Ali Mollabashi. Entanglement in lifshitz-type quantum field theories. Journal of High Energy Physics, 2017(7):1–24, 2017.
[18] M Mozaffar and Ali Mollabashi. Entanglement evolution in lifshitz-type scalar theories. Journal of High Energy Physics, 2019(1):1–25, 2019.
[19] Rudolf Haag. Local quantum physics: Fields, particles, algebras. Springer Science & Business Media, 2012.
[20] Marina Huerta and Guido van der Velde. Modular hamiltonian of the scalar in the semi-infinite line: dimensional reduction for spherically symmetric regions. Journal of High Energy Physics, 2023(6):1–23, 2023.
[21] Noburo Shiba. Entanglement entropy of disjoint regions in excited states: an operator method. Journal of High Energy Physics, 2014(12):1–22, 2014.
[22] Jyotirmoy Mukherjee. Pseudo entropy in u (1) gauge theory. Journal of High Energy Physics, 2022(10):1–30, 2022.
[23] S He, T Numasawa, T Takayanagi, and K Watanabe. Quantum dimension as entanglement entropy in 2d cfts, arxiv e-prints (mar, 2014). arXiv preprint arXiv:1403.0702.
[24] Masahiro Nozaki. Notes on quantum entanglement of local operators. Journal of High Energy Physics, 2014(10):1–38, 2014.
[25] A Liam Fitzpatrick, Jared Kaplan, and Matthew T Walters. Universality of long-distance ads physics from the cft bootstrap. Journal of High Energy Physics, 2014(8):1–65, 2014.
[26] Kazuki Doi, Jonathan Harper, Ali Mollabashi, Tadashi Takayanagi, and Yusuke Taki. Pseudoentropy in ds/cft and timelike entanglement entropy. Physical Review Letters, 130(3):031601, 2023.
[27] Jonathan Harper, Ali Mollabashi, Tadashi Takayanagi, Yusuke Taki, et al. Timelike entanglement entropy. Journal of High Energy Physics, 2023(5):1–62, 2023.
[28] Ze Li, Zi-Qing Xiao, and Run-Qiu Yang. On holographic time-like entanglement entropy. Journal of High Energy Physics, 2023(4):1–27, 2023.
[29] Maxime Jonker. Entanglement entropy of coupled harmonic oscillators: an approach in Fock space. Master’s thesis, 2016.
[30] Ingo Peschel. Calculation of reduced density matrices from correlation functions. Journal of Physics A: Mathematical and General, 36(14):L205, 2003.
[31] Shinsei Ryu and Tadashi Takayanagi. Aspects of holographic entanglement entropy. Journal of High Energy Physics, 2006(08):045, 2006.52
[32] Sarthak Bagaria. Holographic Entanglement Entropy. PhD thesis, Indian Institute of Technology Bombay, 2014.
[33] Pasquale Calabrese and John Cardy. Entanglement entropy and quantum field theory. Journal of statistical mechanics: theory and experiment, 2004(06):P06002, 2004.
[34] Gary W Gibbons and Stephen W Hawking. Action integrals and partition functions in quantum gravity. Physical Review D, 15(10):2752, 1977.
[35] Horacio Casini and Marina Huerta. Lectures on entanglement in quantum field theory. arXiv preprint arXiv:2201.13310, 2022.
[36] Jens Eisert, Marcus Cramer, and Martin B Plenio. Area laws for the entanglement entropy-a review. arXiv preprint arXiv:0808.3773, 2008.
[37] Nabil Iqbal. Entanglement entropy in field theory and gravity. Eleventh Modave Summer School in Mathematical Physics (Modave2015), page 2, 2015.
[38] Sergey N Solodukhin. Entanglement entropy, conformal invariance and extrinsic geometry. Physics Letters B, 665(4):305–309, 2008.
[39] Nicholas David Birrell and Paul Charles William Davies. Quantum fields in curved space.1984.
[40] Stefan Hollands and Robert M Wald. Quantum fields in curved spacetime. Physics Reports, 574:1–35, 2015.
[41] LH Ford. Cosmological particle production: a review. Reports on Progress in Physics,84(11):116901, 2021.
[42] Curtis T Asplund, Alice Bernamonti, Federico Galli, and Thomas Hartman. Holographic entanglement entropy from 2d cft: heavy states and local quenches. Journal of High Energy Physics, 2015(2):1–24, 2015.
[43] Ming-Chiang Chung and Ingo Peschel. Density-matrix spectra for two-dimensional quantum systems. Physical Review B, 62(7):4191, 2000.
[44] Jiang Long. Correlation function of modular hamiltonians. Journal of High Energy Physics, 2019(11):1–33, 2019.
[45] Raúl Arias, Marcelo Botta-Cantcheff, Pedro J Martinez, and Juan F Zarate. Modular Hamiltonian for holographic excited states. Physical Review D, 102(2):026021, 2020.
[46] Pasquale Calabrese, John Cardy, and Benjamin Doyon. Entanglement entropy in extended quantum systems. J. Phys. A, 42(50):500301, 2009.