研究生: |
王冠傑 Wang, Kuan-Chieh |
---|---|
論文名稱: |
適用於里德-索羅門碼建構之低密度奇偶檢查碼之多模解碼器架構 A multi-mode decoder architecture for RS-LDPC codes |
指導教授: |
翁詠祿
Ueng, Yeong-Luh |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 54 |
中文關鍵詞: | 多模式 、低密度奇偶檢查碼 、里德-索羅門碼建構之低密度奇偶檢查碼 、高資料傳輸率 |
外文關鍵詞: | multi-mode, low-density parity-check (LDPC) codes, RS-LDPC codes, high throughput |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一個好的低密度奇偶檢查碼解碼器通常須具備以下的功能:好的位元錯誤比率、高資料傳輸率以及提供多種模式。對於目前各種現有的低密度奇偶檢查碼解碼器而言,幾乎無法同時達到這三種需求。而在本篇論文中,我們以里德-索羅門碼建構之低密度奇偶檢查碼為例,實作出可達到此三種需求之解碼器。對於一個有效率的多模式的低密度奇偶檢查碼解碼器而言,大部分的硬體資源如排列器應該要在不同模式間共用。雖然里德-索羅門碼建構之低密度奇偶檢查碼並不是準循環模式,但在本篇論文中,我們發現在其同位元檢查矩陣架構中所隱含的架構規則,非常適合用來設計有組態的排列器。採用部分平行化的架構連同我們所提出的排列器,可降低因為多模式所引起的實作複雜度。對於高比例的低密度奇偶檢查碼而言,其高檢查節點維度導致高資料傳輸率的解碼器實作上的困難。為了克服這項困難,我們將同位元檢查矩陣的變數節點分成好幾個群組,依序處理每個群組降低主要路徑的延遲,進而增加傳輸率。為了更進一步增加傳輸率,使用修改過的縱向混合解碼演算法可以有效地增加收斂速度,並且在達到既定的位元錯誤比例下降低解碼迴圈數。我們使用90nm CMOS製程實作了兩個可以提供多種模式的解碼器,且可以達到每秒10的六次方個位元數的資料傳輸率。
For an efficient multi-mode low-density parity-check (LDPC) decoder, most hardware resources, such as permutators, should be shared among different modes. Although an LDPC code constructed based on a Reed-Solomon (RS) code with two information symbols is not quasi cyclic, in this thesis, we re-veal that the structural properties inherent in its parity-check matrix can be adopted in the design of congurable permutators. A partially-parallel architecture combined with the proposed permutators is used to mitigate the increase in implementation complexity for the multi-mode function. The high check-node degree of a high-rate RS-LDPC code leads to challenges in efficient implementation of a high-throughput decoder. To overcome this difficulty, the variable nodes have been partitioned into several groups, and each group is processed sequentially in order to shorten the critical-path delay and, hence, increase the throughput. To further increase the throughput, shuffled message-passing decoding is adopted to increase the convergence speed, which reduces the number of iterations required to achieve a given bit-error-rate performance.
Using a 90-nm CMOS process, multi-mode decoders that can achieve multi-Gbit/s throughput have been implemented.
[1] R. Gallager, "Low-density parity-check Codes," IRE Trans. Inf. Theory, vol.
7, pp. 21-28, Jan. 1962.
[2] D. J. C. Mackay and R. M. Neal, "Near Shannon limit performance of low
density parity check codes," Electronics Letters, vol. 32, no. 18, pp. 1645-1646,
Jan. 1996.
[3] D. J. C. Mackay, "Good error correcting codes based on very sparse matrices,"
IEEE Trans. Inf. Theory, vol. 45, no. 2, pp. 399-431, Mar. 1999.
[4] "IEEE P802.3an, 10GBASE-T task force," http://www.ieee802.org/3/an.
[5] "T.T.S.I digital video broadcasting (DVB) second generation framing struc-
ture for broadband satellite applications," http://www.dvb.org.
[6] IEEE 802.11n. Wireless LAN Medium Access Control and Phsyical Layer
Speci‾cations: Enhancements for Higher Throughput.
[7] I. Djurdjevic, J. Xu, K. Abdel-GhaRar, and S. Lin, "A class of low-density
parity-check codes constructed based on Reed-Solomon codes with two infor-
mation symbols," IEEE Communication Letters, vol. 7, no. 7, pp. 317-319,
July 2003.
[8] J. Xu, L. Chen, L. Zeng, L. Lan, and S. Lin, "Construction of Low-Density
Parity-Check Codes by Superposition," IEEE Transactions On Communica-
tions, vol. 53, no. 2, pp. 243-251 , February 2005.
[9] J. Tang, T. Bhatt, V. Sundaramurthy, and K.K. Parhi, "Recon‾gurable shu2e
network design in LDPC decoder." Int. Conf. on Application speci‾c Systems,
Architectures and Processors. (ASAP), pp. 81-86, Sep. 2006.
[10] D. Oh, and K.K. Parhi, "Area E±cient Controller Design of Barrel Shifters
for Recon‾gurable LDPC Decoders." ISCAS 2008, pp. 240-243, May. 2008.
[11] J. Zhang, M.P.C Fossorier, "Shu2ed Iterative Decoding," IEEE Trans. Com-
munications. Theory, vol. 53, no. 6, pp. 209-213, Feb. 2005.
[12] J. Chen, M. Fossorier, "Density evolution for two improved BP-based decoding
algorithms of LDPC codes," IEEE Commun. Lett, vol. 6, pp. 208-210, May.
2002.
[13] Y. L. Ueng, C. J. Yang, and C. J. Chen, "A shu2ed message-passing decoding
method for memory-based LDPC decoders," in Proc. IEEE ISCAS 2009, pp.
892-895, May 2009.
[14] A. Darabiha, A. C. Carusone, and F. R. Kschischang, "Block-Interlaced LDPC
Decoders with Reduced Interconnect Complexity", Proc. IEEE Transactions
On Circuits and Systems II, vol. 55, pp. 74-78, Jan 2008.
[15] T. Mohsenin, D. Truong and B. Baas, "Multi-Split-Row Threshold Decoding
Implementations for LDPC codes," in Proc. IEEE ISCAS 2009, pp. 2449-2452,
May 2009.
[16] A. Darabiha, A. Carusone and F. R. Kschischang, "A 3.3-Gbps Bit-Serial
Block-Interlaced Min-Sum LDPC Decoder in 0.13-1m CMOS," Custom Inte-
grated Circuit Conference, pp. 459 - 462 Sept. 2007.
[17] L. Liu and C.-J. Richard Shi, "Sliced Message Passing: High Throughput
Overlapped Decoding of High-Rate Low-Density Parity-Check Codes," IEEE
Transactions On Circuits and Systems, vol. 55, no. 11, December 2008.
[18] Chia-Wei Cheng, "Design and Implementation of High-Throughput LDPC
Decoder for IEEE 802.3an Applications," National Chiao Tung University,
Hsinchu, Taiwan, R.O.C., November 2007.
[19] R. M. Tanner, "A recursive approach to low complexity codes,"IEEE Trans-
actions Inform. Theory, vol. IT-27, pp. 533-547, Sep. 1981.
[20] V.E. Benes, "Optimal rearrangeable multistage connecting networks" Bell
Syst. Tech. J., no. 43, pp. 1641-1656, 1964.
[21] S. ten Brink, G. Kramer, and A. Ashikhmin, "Design of low-density parity-
check codes for modulation and detection," IEEE Trans. Commun., vol. 52,
no. 4, pp. 670-678, Apr. 2004.
[22] D. E. Hocevar, "A reduced complexity decoder architecture via layered layered
decoding of LDPC codes," IEEE SiPS, pp. 107-112, Oct. 2004.
[23] J. Sha, Z. Wang, M. Gao, and L. Li, "Multi-Gb/s LDPC Code Design and
Implementation," IEEE Transactions on VLSI Systems, vol. 17, no. 2, pp.
262-268, Feb. 2009.
[24] R. Y. Shao, S. Lin, and M. Fossorier, "Two simple stopping criteria for turbo
decoding," IEEE Trans. Commun., vol. 47, pp. 1117-1120, Aug. 1999.
[25] X.-Y. Shih, C.-Z. Zhan, C.-H. Lin, and A.-Y.Wu, "An 8.29 mm2 52 mW multi-
mode LDPC decoder design for mobile WiMAX system in 0.13 1m CMOS
process," IEEE J. Solid-State Circuits, vol. 43, pp. 672-683, March 2008.
[26] T. Brack, M. Alles, T. Lehnigk-Emden, N.E. L'Insalata, F. Rossi, and M.
Rovini, "Low complexity LDPC code decoders for next generation standards,"
in Proc. Des., Autom. Test Eur. (DATE '07), Apr. 2007.
[27] G. Masera, F. Quaglio, and F. Vacca, "Implementation of a °exible LDPC
decoder," IEEE Trans. Circuits. Syst. II, Exp. Briefs, vol. 54, no. 6, pp. 542-
546, June 2007.