研究生: |
謝宗翰 Tsung-Han Hsieh |
---|---|
論文名稱: |
多壁碳管補強高分子樹脂之複材樑與三明治結構動態特性研究 Dynamic Properties of Composite Beam and Sandwich Structure with MWNTs Reinforcement in Polymer Matrix |
指導教授: |
葉孟考
Meng-Kao Yeh |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 114 |
中文關鍵詞: | 奈米複合材料 、多壁奈米碳管 、動態特性 |
外文關鍵詞: | nanocomposite, MWNTs, dynamic propertits |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米碳管具有優良的機械與化學特性,因此科學家們紛紛以奈米碳管為補強材來製作高性能的奈米複合材料。本文將以多壁奈米碳管補強高分子樹脂材料,探討此高分子複合材料於動態特性上的表現,其動態特性包含自然頻率與耗損因子。受動態負載之結構中所選用的材料直接影響機具結構的動態特性,加有奈米碳管的高分子樹脂,可提升材料的剛性,提升結構的共振頻率,減少因共振現象對結構的影響;而奈米碳管與高分子基材間良好的界面特性,可提升材料的阻尼特性。
本研究將以有限元素分析模擬結構的振動模態與自然頻率,並與振動實驗量測結果比較。實驗結果所獲得的振動頻譜響應曲線可利用半能量頻寬法計算材料之耗損因子。最後將高分子複合材料運用於三明治結構中核心部份,表面材料則選用碳纖維疊層板,探討不同纖維疊層角對三明治結構態特性的影響。由於有限單元分析需材料常數,因而也將材料進行拉伸實驗,由實驗結果探討奈米複材機械特性,最後以SEM觀察材料破壞表面,了解材料受拉伸負載的破壞機制與碳管於樹脂中的分佈情形。
The carbon nanotubes (CNTs) have better mechanical and chemical properties. Researchers used CNTs as reinforcement to fabricate nano- composites. In this study, multi-walled nanotubes (MWNTs) were used to reinforce the polymer resin, and the dynamic properties of the nanocomposites were investigated experimentally. Dynamic properties such as natural frequency and loss factor were measured. When the structure was subjected to dynamic loading, the material used would influence the dynamic characteristics of the structure directly. The addition of MWNTs in the polymer matrix increased the stiffness and natural frequency of the structure, and decreased the effect of resonance. There is good interfacial characteristic between the MWNTs and polymer resin which increased the damping characteristic.
In this study, finite element analysis was used to simulate the structural mode shape and natural frequency, and the results were compared to the results obtained from the vibration test. Moreover, Half-Power Bandwidth method was used to calculate the loss factor from the frequency spectrum response. At last, polymeric composites were applied to the core part of the sandwich structure, and graphite/epoxy laminates were applied to be surface material. The effects of different ply-angle on the dynamic characteristics of graphite/epoxy laminates were investigated. Material parameters should be defined in the analysis. The specimen was subjected to tension test. With the test, the mechanical properties of nanocomposites were discussed. Finally, SEM was used to observe the fractured surface of nanocomposites to understand the failure mechanism of the material subject to tension loading and the distribution of the MWNTs in the resin matrix.
1. S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature, Vol. 354, pp. 56-58, 1991.
2. E. T. Thostenson, Z. Ren and T. W. Chou, “Advances in the Science and Technology of Carbon Nanotubes and their Composites : a review,” Composites Science and Technology, Vol. 61, pp. 1899-1912, 2001.
3. S. Xie, W. Li, Z. Pan, B. Chang and L. Sun, “Mechanical and Physical Properties on Carbon nanotube,” Journal of Physics and Chemistry of Solids, Vol. 61, pp. 1153-1158, 2000.
4. B. G. Demczyk, Y. M. Wang, J. Cumings, M. Hetman, W. Han, A. Zettl and R. O. Ritchie, “Direct Mechanical Measurement of the Tensile Strength and Elastic Modulus of Multiwalled Carbon Nanotubes,” Materials Science and Engineering A, Vol. 334, pp. 173-178, 2002.
5. A. Allaoui, S. Bai, H. M. Cheng and J.B. Bai, “Mechanical and Electrical Properties of a MWNT/Epoxy Composite,” Composites Science and Technology, Vol. 62, pp. 1993–1998, 2002.
6. J. B. Bai, “Evidence of the Reinforcement Role of Chemical Vapour Deposition Multi-Walled Carbon Nanotubes in a Polymer Matrix,” Letters to the Editor/Carbon, Vol. 41, pp. 1325-1328, 2003.
7. C. A. Cooper, D. Ravich, D. Lips, J. Mayer and H. D. Wagner. “Distribution and Alignment of Carbon Nanotubes and Nanofibrils in a Polymer Matrix,” Composites Science and Technology, Vol. 62, pp. 1101-1102, 2002.
8. M. Wong, M. Paramsothy, X. J. Xu, Y. Ren, S. Li and K. Liao, “Physical Interactions at Carbon Nanotube-polymer Interface,” Polymer, Vol. 44, pp. 7757-7764, 2003.
9. K. T. Lau, “Interfacial Bonding Characteristics of Nanotube/polymer Composites,” Chemical Physical Letter, Vol. 370, pp. 399-405, 2003.
10. E. T. Thostenson and T. W. Chou, “Nanotube Buckling in Aligned Multi-wall Carbon Nanotube Composites,” Carbon, Vol. 42, pp. 3015-3022, 2004.
11. D. S. Lim, J. W. An and H. J. Lee, “Effect of Carbon Nanotube Addition on the Tribological Behavior of Carbon/Carbon Composite,” Wear, Vol. 252, pp. 512-517, 2002.
12. M. K. Yeh, N. H. Tai and Y. J. Lin, “Fabrication and Mechanical Properties of MWNTs/Phenolic Nanocomposites,” 2005 International Conference on Advanced Manufacture, Taipei, Taiwan.
13. X. Z hou, E. Shin, K. W. Wang and C. E. Bakis, “Interfacial Damping Characteristics of Carbon Nanotube-based Composite,” Composites Science and Technology, Vol. 64, pp. 2425-2437, 2004.
14. I. C. Finegan, G. G. tibbetts and R. F. Gibson, “Modeling and Characterization of Damping in Carbon nanofiber/polypropylene Composites,” Composites Science and Technology, Vol. 63, pp.1629-1635, 2003.
15. N. A. Koratkar, B. Wei and P. M. Ajayan, “Multifunctional Structural Reinforcement Featuring Carbon Nanotube Films,” Composites Science and Technology, Vol. 63, pp. 1525-1531, 2003.
16. C. A. Steevens and N. A. Flect, “Material Selection in Sandwich Beam Construction,” Scripta Materialia, Vol. 50, pp. 1335-1339, 2004.
17. J. Kim and S. R. Swanson, “Design of Sandwich Structures for Concentrated Loading,” Composite Structure, Vol. 52, pp. 365-373, 2001.
18. A. Muc and P. Zuchara, “Buckling and Failure Analysis of FRP Face Sandwich Plates,” Composite Structure, Vol. 40, pp. 145-150, 2000.
19. S. J. Huang, “An Analytical Method for Calculating the Stress and Strain in Adhesive Layers in Sandwich Beams,” Composite Structures, Vol. 60, pp. 105-114, 2003.
20. Y. W. Kwon, S. H. Yoon and P. J. Sistare, “Compressive Failure of Carbon-Foam Sandwich Composites with Holes and/or Partial Delamination,” Composites Structures, Vol. 38 pp. 573-580, 1997.
21. W. J. Cantwell, R. Scudamore, J. Ratcliffe and P. Davies, “Interfacial Fracture in Sandwich Laminates,” Composites Science and Technology, Vol. 59, pp. 2079-2085, 1999.
22. J. H. Yim, S. Y. Cho, Y. J. Seo and B. Z. Jang, “A Study on Material Damping of 0° Laminated Composite Sandwich Cantilever Beams with a Viscoelastic Layer,” Composite Structures, Vol. 60, pp. 367-374, 2003.
23. S. A. Nayfeh, “Damping of Flexural Vibration in the Plane of Lamination of Elastic-Viscoelastics Sandwich Beams,” Journal of Sound and Vibration, Vol. 276, pp. 689-711, 2004.
24. L. Kari, K. Lindgren, L. Feng and A. Nilsson, “Constrained Polymer Layers to Reduce Noise: Reality or Fiction-An Experimental Inquiry into their Effectiveness,” Polymer Testing, Vol. 21, pp. 949-958, 2002.
25. M. D. Rao, R. Echempati and S. Nadella, “Dynamic Analysis and Damping of Composite Structures Embedded with Viscoelastic Layers,” Composites, Vol. 28, pp. 547-554, 1997.
26. T. L. Teng and N. K. Hu, “Analysis of Damping Characteristics for Viscoelastic Laminated Beams,” Computer methods in applied mechanics and engineering, Vol. 190, pp. 3881-3892, 2001.
27. W. Y. Jung and A. J. Aref, “A Combined Honeycomb and Solid Viscoelastic Material for Structural Damping Application,” Mechanics of Materials, Vol. 35 pp. 831-844, 2003.
28. J. A. Zapfe and G. A. Lesieutre, “A Discrete Layer Beam Finite Element for the Dynamic Analysis of Composite Sandwich with Integral Damping Layers,” Computers and Structures, Vol. 70, pp. 647-666, 1999.
29. R. D. Corsaro and L. H. Sperling, Sound and Vibration Damping with Polymers, American Chemical Society, Washington, 1990.
30. P. Q. Zhang, J. H. Ruan and W. Z. Li, “Influence of Some Factors on the Damping Property of Fiber-reinforced Epoxy Composites at Low Temperature,” Cryogenics, Vol. 41, pp. 245-251, 2001.
31. A. S. Hadi and N. Ashton, “Measurement and Theoretical Modelling of the Damping Properties of a Uni-directional Glass/epoxy Composite,” Composite Structures, Vol. 34, pp. 381-385, 1996.
32. T. R. Lin, N. H. Farag and J. Pan, “Evaluation of Frequency Rubber Mount Stiffness and Damping by Impact Test,” Applied Acoustics, Vol. 66, pp. 829-844, 2005.
33. M. D. Rao, “Recent Applications of Viscoelastic Damping for Noise Control in Automobiles and Commercial Airplane,” Journal of Sound and Vibration, Vol. 262, pp. 457-474, 2003.
34. H. Fukudome, K. Nakazato and Y. Aoi, “The Study on Application of High Damping Adhesive to Body Joint Location,” Mitsubushi Motors Corporation, Vol. 12, pp. 81-84.
35. A. Kaya, M. S. Tekelioglu and F. Findil, “Effects of Various Parameters on Dynamic Characteristics in Adhesively Bounded Joints,” Materials Letters, Vol. 58, pp. 3451-3456, 2004.
36. X. Boutillon and B. David, “Assessing Tuning and Damping of Historical Carillon Bells and their Changes Through Restoration,” Applied Acoustics, Vol. 63, pp. 901-910, 2002.
37. J. Bretos, C. Santamaria and J. A. Moral, “Finite Element Analysis and Experimental Measurements of Natural Eigenmodes and Random Responses of Wooden Bars Used in Musical Instruments,” Applied Acoustics, Vol. 56, pp.141-156, 1999.
38. ANSYS Element Reference. 000855. Eighth Edition. SAS IP, Inc.1997
39. ANSYS Theory Reference. 000855. Eighth Edition. SAS IP, Inc.1997
40. R. F. Gibson, Principles of Composite Material Mechanics, McGraw-Hill, New York, 1994.
41. S. S. Rao, Mechanical Vibrations, Pearson Prentice Hall, 2004.
42. A. D. Nashif, D. I. G. Jones and J. P. Henderson, Vibration Damping, Wiley, New York, 1985.
43. 林奕男, 懸臂樑結構尺寸與自然頻率及阻尼比關係之研究,” 中興大學機械工程研究所論文, 2004.
44. ASTM E756-98, “Standard Test Method for Measuring Vibration-Damping Properties of Materials”, Annual Book of ASTM Standards, 1998.
45. 林彥君, “以多壁奈米碳管及纖維補強酚醛樹脂之複合材料機械性質研究,” 清華大學動力機械工程研究所論文, 2005.
46. K. S. Kim and C. S. Hong, “Delamination Growth in Angle-Ply Laminated Composites,” Journal of Composite Materials, Vol. 20, pp. 423-438, 1986.
47. M. K. Yeh and C. M. Tan, “Buckling of Elliptically Delaminated Composite plates,” Journal of Composite Materials, Vol. 28, No. 1, pp. 36-52, 1994.
48. ASTM D3039-76, “Standard Test Method for Tensile Properties of Fiber-Resin Composites,” Annual Book of ASTM Standards, Section 3, Vol. 15.03, pp. 162-165, 1983.
49. ASTM D3518-76, “Standard Practice for Inplane Shear Stress-strain Response of Unidirectional Reinforced Plastics,” Annual Book of ASTM Standards, Section 3, Vol. 15.03, pp. 202-207, 1983.
50. L. A. Carlsson and R. B. Pipes, Experimental Characterization of Advanced Composite Materials, New Jersey, Prentic-Hall, 1987.
51. ASTM D638-82a, “Standard Test Method for Tensile Properties of Plastics,” Annual Book of ASTM Standards, Vol. 8.2, 1982.
52. J. W. Dally and W. F. Riley, “Experimental Stress Analysis,” New York, McGraw-Hill Inc., 1991
53. 劉增豐, “高強度高韌性鐵鋁錳合金鋼之研製,” 科學發展月刊, 第28卷, 第12期, pp. 943-946.