簡易檢索 / 詳目顯示

研究生: 張翔智
論文名稱: 以γ-h2ax 蛋白探討重離子引起 DNA 傷害之修復動態
Spatiotemporal kinetics of -h2ax protein for DNA damage induced by heavy charged particles
指導教授: 周文采
牛寰
口試委員: 劉晉昇
吳嘉明
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 71
中文關鍵詞: 重荷電粒子γ-h2axDNA修復
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    在許多研究中,重荷電粒子已被證明會造成較複雜的 DNA 傷害
    (complex DNA damage),而且此種傷害將會造成較顯著的生物效應。
    然而,關於重荷電粒子引起 DNA 傷害的修復機制仍有待探討。因此,
    本實驗利用國立清華大學加速器實驗室的重荷電粒子生物照射系統進
    行細胞照射,並分析 γ-h2ax 蛋白的表現量,藉以探討重荷電粒子引起
    DNA 傷害的修復動態。
    本實驗使用 2 MeV α 粒子對 HeLa 細胞進行照射,照射劑量分別為
    10、20、50、100 α粒子/細胞。照射完畢後,於不同修復時間點對細胞
    樣品進行固定 (fixed) 以及 γ-h2ax 螢光免疫染色,隨後使用反向式螢光
    顯微鏡 (TE2000, Nikon) 擷取 γ-h2ax 螢光影像。最後,將取得影像載入
    image-j 軟體並分析不同修復時間 γ-h2ax 蛋白表現量,以獲得 DNA 修復
    反應動態。
    結果顯示,細胞於照射後 5 分鐘,已可觀察到 γ-h2ax 聚集,且 γ-h2ax
    蛋白表現量隨著時間增加而逐漸上升,並於 20 ~ 30 分鐘左右達最大值。
    而γ-h2ax 累積速率,隨著劑量增加而上升。在達到最大值後,γ-h2ax 的
    表現量隨著時間增加而緩慢減少,並且於 48 小時後仍殘留相當高的比
    率 ( > 25 %),其殘留比率亦隨著劑量增加而上升。雙指數衰減擬合結果
    顯示,代表單一 DNA 傷害 (simple DNA damage) 修復的成分隨著劑量
    上升而減少,而代表複雜 DNA 傷害 (complex DNA damages) 修復的成
    分則隨劑量上升而增加。此一部分結果顯示,隨著重荷電粒子劑量增加,
    將造成複雜 DNA 傷害的比率增加。
    於本論文中,我們發現細胞對於 DNA 傷害的修復能力將會依照重
    荷電粒子劑量增加而改變。隨著劑量上升,使 DNA 傷害的複雜程度增
    加,造成細胞對於 DNA 傷害的修復能力下降,進而產生更顯著之生物
    效應。


    目錄 Abstract ............................... i 摘要 ................................... ii 致謝 ................................... iv 目錄 .................................... v 圖目錄 ................................ viii 表目錄 .................................. xi 第一章 前言............................... 1 1-1 游離輻射 ............................. 1 1-1-1 游離輻射分類 ...................... 2 1-1-2 重荷電粒子特性 .................... 3 1-1-3 重荷電粒子研究領域 ................. 5 1-2 游離引起 DNA 傷害 ................... 6 1-2-1 DNA 之結構與功能 ...................7 1-2-2 游離輻射引起 DNA 傷害種類 ............9 1-2-3 不同直線能量轉移引起的 DNA 傷害 .......12 1-3 DNA 傷害反應與修復 .................. 13 1-3-1 DNA 傷害反應 ..................... 13 1-3-2 DNA 修復機制 ....................... 14 1-4 研究動機與目的 ...................... 18 1-5 論文架構 ........................... 19 第二章 材料與方法 .......................... 20 2-1 實驗儀器 ........................... 20 2-1-1 KN 型正離子范氏加速器............... 20 2-1-2 細胞照射系統 ...................... 24 2-1-3 照射系統表現 ...................... 26 2-2 實驗方法 ......................... 28 2-2-1 細胞培養 ......................... 28 2-2-2 細胞大小計算 ...................... 29 2-2-3 細胞照射 ......................... 30 2-2-4 螢光免疫染色方法 ................... 32 2-2-5 螢光影像擷取 ...................... 35 2-2-6 γ-h2ax 影像分析 .................. 36 2-2-7 數據分析 ......................... 37 第三章 結果與討論 .......................... 38 3-1 γ-h2ax 螢光影像資訊意義 ................ 38 3-2 γ-h2ax 蛋白聚集分布及動態............... 42 3-2-1 γ-h2ax 蛋白聚集分布及背景 .......... 43 3-2-2 γ-h2ax 蛋白表現與劑量之關係......... 44 3-2-3 γ-h2ax 蛋白聚集動態 ............... 47 3-3 DNA 雙股斷裂修復動態 .................. 53 第四章 結論................................ 64 第五章 未來工作 ........................... 65 參考文獻 .................................. 66

    參考文獻

    Alpen, E., et al. (1993). "Tumorigenic potential of high-Z, high-LET charged-particle
    radiations." Radiation research 136(3): 382-391.
    Ames, B. N. (1989). "Endogenous oxidative DNA damage, aging, and cancer." Free
    Radical Research 7(3-6): 121-128.
    Asaithamby, A., et al. (2008). "Repair of HZE-particle-induced DNA double-strand
    breaks in normal human fibroblasts." Radiation research 169(4): 437-446.
    Aten, J. A., et al. (2004). "Dynamics of DNA double-strand breaks revealed by
    clustering of damaged chromosome domains." Science 303(5654): 92-95.
    Attix, F. H. (2008). Introduction to radiological physics and radiation dosimetry,
    Wiley-VCH.
    Banáth, J. P., et al. (2004). "Radiation sensitivity, H2AX phosphorylation, and
    kinetics of repair of DNA strand breaks in irradiated cervical cancer cell lines."
    Cancer Research 64(19): 7144-7149.
    Bassing, C. H., et al. (2002). "Increased ionizing radiation sensitivity and genomic
    instability in the absence of histone H2AX." Proceedings of the National Academy
    of Sciences 99(12): 8173-8178.
    Beels, L., et al. (2010). "Dose response and repair kinetics of γ-H2AX foci induced
    by in vitro irradiation of whole blood and T-lymphocytes with X-and γ-radiation."
    International Journal of Radiation Biology 86(9): 760-768.
    Böcker, W. and G. Iliakis (2006). "Computational methods for analysis of foci:
    Validation for radiation-induced γ-H2AX foci in human cells." Radiation research
    165(1): 113-124.
    Burkart, W., et al. (1999). "Damage pattern as a function of radiation quality and
    other factors." Comptes Rendus de l'Académie des Sciences-Series III-Sciences de
    la Vie 322(2): 89-101.
    Burma, S., et al. (2001). "ATM phosphorylates histone H2AX in response to DNA
    double-strand breaks." Journal of Biological Chemistry 276(45): 42462-42467.
    Cai, Z., et al. (2009). "Computational analysis of the number, area and density of
    γ-H2AX foci in breast cancer cells exposed to 111In-DTPA-hEGF or γ-rays using
    Image-J software." International journal of radiation biology 85(3): 262-271.
    Chauhan, V., et al. (2012). "Biological effects of alpha particle radiation exposure on
    human monocytic cells." International journal of hygiene and environmental health
    Chen, D., et al. (1994). "Charged-particle mutagenesis II. Mutagenic effects of high
    energy charged particles in normal human fibroblasts." Advances in Space
    Research 14(10): 347-354.
    Cho, I. C., et al. (2011). "A Novel Cell Irradiation System Using 90 Scattering
    Technique." Nuclear Science, IEEE Transactions on 58(1): 95-98.
    Ciarlo, D. R. (2002). "Silicon nitride thin windows for biomedical microdevices."
    Biomedical Microdevices 4(1): 63-68.
    Costes, S. V., et al. (2010). "Spatiotemporal characterization of ionizing radiation
    induced DNA damage foci and their relation to chromatin organization." Mutation
    Research/Reviews in Mutation Research 704(1–3): 78-87.
    Costes, S. V., et al. (2006). "Imaging features that discriminate between foci induced
    by high-and low-LET radiation in human fibroblasts." Radiation research 165(5):
    505-515.
    Cottereau, E. (2001). DC accelerators, Technical report.
    David-Cordonnier, M.-H., et al. (2002). "Efficiency of incision of an AP site within
    clustered DNA damage by the major human AP endonuclease." Biochemistry 41(2):
    634-642.
    Dianov, G. L., et al. (2001). "Securing genome stability by orchestrating DNA repair:
    removal of radiation‐induced clustered lesions in DNA." Bioessays 23(8): 745-749.
    Du, G., et al. (2011). "Spatial dynamics of DNA damage response protein foci along
    the ion trajectory of high-LET particles." Radiation research 176(6): 706-715.
    Durante, M. and F. A. Cucinotta (2008). "Heavy ion carcinogenesis and human
    space exploration." Nature Reviews Cancer 8(6): 465-472.
    Eot-Houllier, G., et al. (2005). "Processing of a complex multiply damaged DNA
    site by human cell extracts and purified repair proteins." Nucleic acids research
    33(1): 260-271.
    Field, R. W., et al. (2000). "Residential Radon Gas Exposure and Lung Cancer The
    Iowa Radon Lung Cancer Study." American Journal of Epidemiology 151(11):
    1091-1102.
    Gaisser, T. K. (1991). Cosmic rays and particle physics, Cambridge University Press.
    Goodhead, D. (1994). "Initial events in the cellular effects of ionizing radiations:
    clustered damage in DNA." International journal of radiation biology 65(1): 7-17.
    Goodhead, D. T. (1985). "Saturable repair models of radiation action in mammalian
    cells." Radiation research 104(2s): S58-S67.
    Grawunder, U., et al. (1997). "Activity of DNA ligase IV stimulated by complex
    formation with XRCC4 protein in mammalian cells." Nature 388(6641): 492-495.
    Guida, P., et al. (2005). "Cytotoxic effects of low-and high-LET radiation on human
    neuronal progenitor cells: induction of apoptosis and TP53 gene expression."
    Radiation research 164(4): 545-551.
    Guida, P., et al. (2005). "Cytotoxic effects of low-and high-LET radiation on human
    neuronal progenitor cells: induction of apoptosis and TP53 gene expression."
    Radiation research 164(4): 545-551.
    Hable, V., et al. (2012). "Recruitment kinetics of DNA repair proteins mdc1 and
    rad52 but not 53BP1 depend on damage complexity." PloS one 7(7): e41943.
    Hada, M. and A. G. Georgakilas (2008). "Formation of clustered DNA damage after
    high-LET irradiation: a review." Journal of radiation research 49(3): 203-210.
    Hall, E. J. (1994). Radiobiology for the Radiologist, JB Lippincott Philadelphia.
    Hamada, N., et al. (2006). "LET-dependent survival of irradiated normal human
    fibroblasts and their descendents." Radiation research 166(1): 24-30.
    Harper, J. W. and S. J. Elledge (2007). "The DNA damage response: ten years
    after." Molecular Cell 28(5): 739-745.
    Huang, X., et al. (2004). "Detection of Histone H2AX Phosphorylation on Ser‐139 as
    an Indicator of DNA Damage (DNA Double‐Strand Breaks)." Current Protocols in
    Cytometry: 7-27.
    Jackson, S. P. and J. Bartek (2009). "The DNA-damage response in human biology
    and disease." Nature 461(7267): 1071-1078.
    Jakob, B., et al. (2000). "Immediate Localized CDKN1A (p21) Radiation Response
    after Damage Produced by Heavy-Ion Tracks." Radiation research 154(4): 398-405.
    Joiner, M. and A. Van Der Kogel (2009). Basic clinical radiobiology, CRC Press.
    Jungmichel, S. and M. Stucki (2010). "MDC1: The art of keeping things in focus."
    Chromosoma 119(4): 337-349.
    Keogh, M.-C., et al. (2005). "A phosphatase complex that dephosphorylates γH2AX
    regulates DNA damage checkpoint recovery." Nature 439(7075): 497-501.
    Khanna, K. K. and S. P. Jackson (2001). "DNA double-strand breaks: signaling,
    repair and the cancer connection." Nature genetics 27(3): 247-254.
    Kobayashi, J., et al. (2008). "Current topics in DNA double-strand break repair."
    Journal of radiation research 49(2): 93-103.
    Lander, E. S., et al. (2001). "Initial sequencing and analysis of the human genome."
    Nature 409(6822): 860-921.
    Leatherbarrow, E. L., et al. (2006). "Induction and quantification of γ-H2AX foci
    following low and high LET-irradiation." International journal of radiation biology
    82(2): 111-118.
    Lee, J.-H. and T. T. Paull (2005). "ATM activation by DNA double-strand breaks
    through the Mre11-Rad50-Nbs1 complex." Science Signaling 308(5721): 551.
    Lou, Z., et al. (2006). "MDC1 Maintains Genomic Stability by Participating in the
    Amplification of ATM-Dependent DNA Damage Signals." Molecular Cell 21(2):
    187-200.
    MacPhail, S., et al. (2003). "Expression of phosphorylated histone H2AX in cultured
    cell lines following exposure to X-rays." International journal of radiation biology
    79(5): 351-359.
    Mao, Z., et al. (2008). "DNA repair by nonhomologous end joining and homologous
    recombination during cell cycle in human cells." Cell Cycle 7(18): 2902-2906.
    Memisoglu, A. and L. Samson (2000). "Base excision repair in yeast and mammals."
    Mutation research 451(1-2): 39.
    Miller, J., et al. (2003). "Benchmark studies of the effectiveness of structural and
    internal materials as radiation shielding for the international space station."
    Radiation research 159(3): 381-390.
    Morgan, W. F., et al. (1996). "Genomic instability induced by ionizing radiation."
    Radiation research 146(3): 247-258.
    Munzenrider, J. E. and N. J. Liebsch (1999). "Proton therapy for tumors of the
    skull base." Strahlentherapie und Onkologie 175(2): 57-63.
    Neumaier, T., et al. (2012). "Evidence for formation of DNA repair centers and
    dose-response nonlinearity in human cells." Proceedings of the National Academy
    of Sciences 109(2): 443-448.
    Nikjoos,Uehara We Wilson M.Hoshi Dt Goodhead. (1998). "Track structure in
    radiation biology: theory and applications." International journal of radiation
    biology 73(4): 355-364.
    Norbury, C. J. and I. D. Hickson (2001). "Cellular responses to DNA damage."
    Annual review of pharmacology and toxicology 41(1): 367-401.
    Olive, P. L. (2004). "Detection of DNA damage in individual cells by analysis of
    histone H2AX phosphorylation." Methods in cell biology 75: 355-373.
    Riballo, E., et al. (2004). "A pathway of double-strand break rejoining dependent
    upon ATM, Artemis, and proteins locating to gamma-H2AX foci." Molecular Cell
    16(5): 715.
    Rogakou, E. P., et al. (1999). "Megabase chromatin domains involved in DNA
    double-strand breaks in vivo." The Journal of cell biology 146(5): 905-916.
    Rogakou, E. P., et al. (1998). "DNA double-stranded breaks induce histone H2AX
    phosphorylation on serine 139." Journal of Biological Chemistry 273(10):
    5858-5868.
    Rydberg, B. (1996). "Clusters of DNA damage induced by ionizing radiation:
    Formation of short DNA fragments. II. Experimental detection." Radiation research
    145(2): 200-209.
    Schmid, T. E., et al. (2010). "Differences in the kinetics of γ-H2AX fluorescence
    decay after exposure to low and high LET radiation." International journal of
    radiation biology 86(8): 682-691.
    Scholz, M., et al. (1997). "Computation of cell survival in heavy ion beams for
    therapy." Radiation and environmental biophysics 36(1): 59-66.
    Schulz-Ertner, D. and H. Tsujii (2007). "Particle radiation therapy using proton and
    heavier ion beams." Journal of Clinical Oncology 25(8): 953-964.
    Sedelnikova, O. A., et al. (2002). "Quantitative detection of 125IdU-induced DNA
    double-strand breaks with γ-H2AX antibody." Radiation research 158(4): 486-492.
    Sinden, R. R. (1994). DNA structure and function, Gulf Professional Publishing.
    Slater, J. D., et al. (1998). "Conformal proton therapy for prostate carcinoma."
    International journal of radiation oncology, biology, physics 42(2): 299-304.
    Stucki, M. and S. P .Jackson (2006). "γH2AX and MDC1:anchoring the DNA
    damage response machinery to broken chromosomes." DNA repair 5(5): 534-543.
    Taucher-Scholz, G., et al. (2003). "Microscopic visualization of a biological
    response to charged particle traversal." Nuclear Instruments and Methods in
    Physics Research Section B: Beam Interactions with Materials and Atoms 209:
    270-276.
    Tobias, F., et al. (2013). "Spatiotemporal Dynamics of Early DNA Damage
    Response Proteins on Complex DNA Lesions." PloS one 8(2) : e57953.
    Urushibara, A., Yokoya, A. et al., DNA Damage Induced by the Direct Effect of He
    Ion Particles, Radiation Protection Dosimetry, vol.122, no.1-4, 2006, p.163-165.
    Ü nsal-Kaçmaz, K., et al. (2002). "Preferential binding of ATR protein to
    UV-damaged DNA." Proceedings of the National Academy of Sciences 99(10):
    6673-6678.
    Van Dyck, E., et al. (1999). "Binding of double-strand breaks in DNA by human
    Rad52 protein." Nature 398(6729): 728-731.
    van Rongen, E., et al. (1993). "Recovery from radiation damage in mouse lung:
    Interpretation in terms of two rates of repair." Radiation research 133(2): 225-233.
    Venter, J. C., et al. (2001). "The sequence of the human genome." Science Signaling
    291(5507): 1304.
    Walker, J. R., et al. (2001). "Structure of the Ku heterodimer bound to DNA and its
    implications for double-strand break repair." Nature 412(6847): 607-614.
    Wang, H., et al. (2005). "Complex H2AX phosphorylation patterns by multiple
    kinases including ATM and DNA-PK in human cells exposed to ionizing radiation
    and treated with kinase inhibitors." Journal of Cellular Physiology 202(2): 492-502.
    Ward, J. F. (1985). "Biochemistry of DNA lesions." Radiation research 104(2s) :
    S103-S111.
    Ward, J. F. (1981). "Some biochemical consequences of the spatial distribution of
    ionizing radiation-produced free radicals." Radiation research 86(2): 185-195.
    Wilkins, M. H. F., et al. (1953). "Molecular structure of nucleic acids: molecular
    structure of deoxypentose nucleic acids." Nature 171(4356): 738-740.
    Wilson, R. R. (1946). "Radiological use of fast protons." Radiology 47(5): 487-491.
    Wood, R. D. (1999). "DNA damage recognition during nucleotide excision repair in
    mammalian cells." Biochimie 81(1-2) : 39.
    Wu, J., et al. (2012). "Repair rates of DNA double-strand breaks under different
    doses of proton and γ-ray irradiation." Nuclear Instruments and Methods in Physics
    Research Section B: Beam Interactions with Materials and Atoms 276: 1-6.
    Wyman, C., et al. (2004). "Homologous recombination-mediated double-strand
    break repair." DNA repair 3(8-9): 827-833.
    Yang, T. C.-H., et al. (1985). "Neoplastic cell transformation by heavy charged
    particles." Radiation research 104(2s): S177-S187.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE