研究生: |
黃明鴻 |
---|---|
論文名稱: |
以原子力顯微術製作鎳奈米點並應用於選區成長氧化矽奈米線 Fabrication of Nickel Nanodots by Atomic Force Microscopy and Its Application to the Selective Growth of Silica Nanowires |
指導教授: | 林鶴南 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 53 |
中文關鍵詞: | 原子力顯微術 、氧化矽奈米線 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
原子力顯微術近來應用在奈米微影技術上,有很大的潛力。其中原子力顯微術奈米加工(AFM nanomaching)有很多優點,像是可方便操作於任何基板、具有奈米級解析度等等。在製作奈米元件和奈米結構上,已經有相當多的相關研究。
本實驗利用原子力顯微術在單層光阻上,用探針在光阻上面打洞,接著用電子束蒸鍍鍍上一層鎳,最後將試片放到丙酮之中將PMMA去除,觀察到最小的鎳金屬奈米點約70 nm。
將試片放進快速升溫退火爐中加熱,並且通入Ar加H2的混合氣體,選區成長出均勻直徑的奈米線。藉由EDS的分析,得知奈米線的組成是矽和氧。另外在奈米線的頂端,發現有奈米顆粒的存在,表示奈米線成長遵循VLS機制。此外,在不同的參數下,我們成功做出了直線和螺旋狀的氧化矽奈米線。
Atomic force microscopy (AFM) has recently demonstrated a great potential in the domain of nanolithography. Particularly, AFM nanomachining has many advantages, such as easy operation on any substrates, nano scale resolution etc. There are already many related research activities on the fabrication of nano scale components and structures.
We have employed AFM nano-machining to produce nanogroove nanostructures by operating a tip on a single-layer resist. A Ni thin film was coated on the substrate by e-beam evaporation. The sample was finally soaked in acetone to remove PMMA. A minimum Ni nanodot width of about 70 nm was obtained.
Then the sample was put into a rapid thermal annealing furnace with gas flow of Ar and H2 mixture. Finally, the selective growth of silica nanowires with uniform diameter was achieved. By EDS analysis, the compositions of the silica nanowires were confirmed to be silicon and oxygen. On the top of the nanowires, nanoparticles were found and indicated a vapor-liquid-solid growth mechanism. By controlling the growth parameters, both straight and helical nanowires were successfully produced.
1. M. T. Browne, P. Charalambous and V. A. Kudryashov, Microelectron Eng. 13, 221(1999)
2. S. Iijima, Nature 354, 56(1991)
3. T. Kuykendall, P. J. Pauzauskie, Y. F. Zhang, J. Goldberger, D. Sirbuly, J. Denlinger and P. D. Yang, Nature Mat. 3, 524 (2004)
4. Y. Gao, P. Jiang, D. F. Liu, H. J. Yuan, X. Q. Yan, Z. P. Zhou, J. X. Wang, L. Song, L. F Liu, W. Y. Zhou, G. Wang, C. Y. Wang and S. C. Xie,Chem. Phys.
Lett. 380, 146 (2003)
5. Z. Pan, S. Dai, D. B. Beach and D. H. Lowndes, Nano Lett. 3, 1279 (2003)
6. D. P Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong and S. Q. Feng, Appl. Phys. Lett. 73, 3076 (1998)
7. Y. Cui, Q. Wei, H. Park and C. M. Lieber, Science 293, 1289 (2001)
8. Y. Wu, T. Livneh, Y. X. Zhang, G. Chang, J. Wang, J. Tang, M. Moskouts and
G. D. Stucky, Nano Lett. 4, 2337 (2004)
9. Y. Y. Wei, and G. Eres, Nanotechnology, 11, 61 (2000)
10. K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, D. G. Hasko,
G. Pirio, P. Legagneux, F. Wyczisk, and D. Pribat, Appl. Phys. Lett. 79, 1534 (2001)
11. J. A. Dagata, J. Schneir, H. H. Harary, C. J. Evans, M. T. Postek, and J. Bennett, Appl. Phys. Lett. 56, 2001 (1990)
12. H. Kuramochi, F. P. Murano, J. A. Dagata and H. Yokoyama, Nanotechnology
15, 297 (2004)
13. E. Dubois and J. -L. Bubbendorff, Solid-State Electron 43, 1085 (1999)
14. L. L. Sohn and R. L. Willett, Appl. Phys. Lett. 67, 1552 (1995)
15. J. L. Elechiguerra, J. A. Manriquez and M. J. Yacaman, Appl. Phys. A 79, 461 (2004)
16. V. Bouchiat and D. Esteve, Appl. Phys. Lett. 69, 3098 (1996)
17. J. H. Hsu, C. Y. Lin and H. N. Lin, J. Vac. Sci. Technol. B 22, 2768 (2004)
18. S. H. Li, H. F. Zhu and Y. P. Zhao, J. Phys. Chem. B 108, 17032 (2004)
19. B. Lewis, J. Crystal Growth 21 , 29 (1974)
20. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964)
21. Y. Wu, P. Dong, J. Am. Chem. Soc. 123, 3165 (2001)
22. Y. J. Zhang, N. L. Wang, R. R. He, J. Liu, X. Zhang and J. Zhu, J. Cryst.
Growth 233, 803 (2001)
23. X. C. Wu, W. H. Song, K. Y. Wang, T. Hu, B. Zhao, Y. P. Sun and J. J. Du,
Chem. Phys. Lett. 336, 53 (2001)
24. J. L. Elechiguerra, J. A. Manriquez and M. J. Yacaman, Appl. Phys. A 79, 461 (2004)
25. L. Z. Wang, S. J. Tomura, F. H. Ohashi, M. Meada, M. Suzuki and K. Inukai, J. Mater. Chem. 11, 1465 (2001)
26. R. Fan, Y. Wu, D. Li, M. Yue, A. Majumdar and P. Yang, J. Am. Chem. Soc. 125, 5254 (2003)
27. L. Dai, L. P. You, X. F. Duan, W. C. Lian and G. G. Qin, Phys. Lett. A 335, 304 (2005)
28. R. Ma and Y. Bando, Chem. Phys. Lett. 377, 177 (2003)
29. B. Park and K. Yong, Surf. Rev. Lett. 11, 179 (2004)
30. J. S. Wu, S. Dhara, C. T. Wu, K. H. Chen, Y. F. Chen and L. C. Chen, Adv. Mater.
14, 1847 (2002)
31. J. F. Qi, T. Matsumoto and Y. Masumoto, Jpn. J. Appl. Phys. 2, 40 (2001)
32. Z. L. Wang, R. P. Gao, J. L. Gole and J. Y. H. Tang, Adv. Mater. 12, 2938 (2000)
33. Z. J. Wang, B. Q. Wei and J. D. Stout, J. Phys. –Condens. Mat. 14, L511 (2002)
34. Y. J. Chen, J. B. Li, Y. S. Han, Q. M. Wei and J. H. Dai, Appl. Phys. A 74, 433
(2002)
35. L. Dai, X. L. Chen, T. Zhou and B. Q. Hu, J. Phys.-Condens. Mat. 14, L473 (2002)
36. Z. Pang, S. Dai, D. B. Beach and D. H. Lowndes, Nano Lett. 3, 1279 (2003)
37. Midori Kawamura, Neelima Paul, Vasily Cherepanov, and Bert Voigtlander, Phys. Rev. Lett. 91, 096102 (2003)
38. B. Zhang, Y. Wu, P. Dong and J. Liu, Adv. Mater. 14, 122 (2002)
39. Z. W. Wei, Z. R. Dai, C. Ma and Z. L. Wang, J. Am. Chem. Soc. 124, 1817(2002)
40. T. Park and K. Yong, Nanotechnology 15, 365 (2004)
41. H. F. Zhang, C. M. Wang, E. C. Buck and L. S. Wang, Nano. Lett. 3, 577 (2003)
42. H. F. Zhang, C. M. Wang and L. S. Wang, Nano Lett. 2, 941 (2002)
43. D. N. Mcllroy, D. Zhang and Y. Kranov, Appl. Phys. Lett. 79, 1540 (2001)
44. D. N. McIlroy, A. Alkhateeb, D. Zhang, D. E. Aston, A. C. Mercy and M. G. Norton, J. Phys.: Condens. Matter 16, R415 (2004)
45. S. Motojima, S. Ueno, T. Hattori and K. Goto, Appl. Phys. Lett. 54, 1001 (1989)
46. S. Motojima, M. Kawaguchi, K. Nozaki and H. Iwanaga, Appl. Phys. Lett. 56, 321(1990)
47. D. Zhang, A. Alkhateeb, H. Han, H. Mahmood, D. N. McIlroy and M. G. Norton, Nano Lett. 3, 983 (2003)
48. H. Nishikawa, R. Nakamura and Y. Ohki, Phys. Review B 48, 584 (1993)
49. L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liuand and E. Mazur, Nano Lett. 5, 259 (2005)