研究生: |
鄭智隆 Cheng, Chih Long |
---|---|
論文名稱: |
物聯網對健康照護的應用 Internet of Things for Healthcare |
指導教授: |
馬席彬
Ma, Hsi-Pin |
口試委員: |
翁詠祿
Ueng, Yeong-Luh 黃元豪 Huang, Yuan-Hao |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2015 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 62 |
中文關鍵詞: | 物聯網 、健康照護 、無線感測器網路 、藍芽 |
外文關鍵詞: | Internet of Things, Healthcare, Wireless Sensor Network, Bluetooth |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
物聯網在近幾年變成一個非常熱門的主題,他提供了一個訊息收集、分享的關鍵性答案。在健康照護中,這個概念通常用來實現遠距離監控以及遠端服務。到目前為止,已經有各式各樣搭配物聯網概念的應用產生,而基於物聯網概念的穿戴式健康監控系統就是其中之一。
在此篇論文中,系統使用”廣域網-感測器區域網”這種無線感測器網路架構來進行設計,在這樣的系統中,主要會有三種組成物件:主感測器節點、從感測器節點、和中心伺服器,從感測器節點負責量測環境或人體的參數資料;主感測器節點負責搜尋周圍的從感測器節點,並進行連線、收集參數資料;中心伺服器則匯集所有主感測器節點收集到的資料參數。在這樣的無線感測網路架構下,系統使用藍芽、Wi-Fi 這兩種最常見的通訊技術來傳遞資料,我們也設計網站提供客戶端所需要的資料作圖、以及使用者互動介面。人們可以藉由連上網際網路來觀察這些資料參數以及調整系統。經過實作與評估後,系統表現良好,資料上傳時間平均0.713 秒,每次啟動時間89.5 秒。此外,主感測器節點是實作於安卓系統的裝置上,能提供一般使用者用自己的安著手機平板去建立感測網路,如此一來這個系統不只能在控制區域(例如:醫院環境)下使用,未來也能夠開發成行動健康照護的應用。
The Internet of Things (IoT) has become a hot topic these years. It provides a key to information collection and sharing. In the application for healthcare, it is used to build applications such as remote monitoring and tele-care systems. Up to now, there have been various kinds of IoT applications for healthcare. Among all kinds of IoT applications for healthcare, the IoT-based Wearable Healthcare Monitoring System (WHMS) is one of the most popular applications.
In this thesis, an IoT-based WHMS is designed by using the wide area network-sensor area network (WAN-SAN) architecture. In this system, there are three basic components: the master sensor node (MSN), the slave sensor node (SSN), and the central server. The SSN is responsible for measuring parameters from humans or environments. The MSN is responsible for discovering, connecting to SSNs, and collecting data from them. The central server is responsible for handling the connection between MSNs and SSNs, collecting data from all MSNs, and managing data. In theWAN-SAN architecture, we use Bluetooth and Wi-Fi, which are two of the most common communication technologies, to transfer data. There is also a website which provides visualized data and the GUI for the clients. People can observe data and configure the system on the website through the Internet. After implementation and evaluation, this system presents an adequate performance, with an average 0.713 seconds for data upload and 89.5 seconds for the system set-up. Besides, the MSN in this system is implemented on the Android platform, which means that people can use their Android mobile devices to set up MSNs everywhere. This system can be not only used in the controlled area such as the hospital environment, but also developed into a mobile-health application in the future.
[1] H. Alemdar and C. Ersoy, “Wireless sensor networks for healthcare: A survey,”
Computer Networks, vol. 54, no. 15, pp. 2688 – 2710, 2010. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1389128610001398
[2] K. Ashton, “That internet of things thing,” RFiD Journal, vol. 22, no. 7, pp. 97–114,
2009.
[3] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things (iot): A
vision, architectural elements, and future directions,” Future Generation Computer
Systems, vol. 29, no. 7, pp. 1645 – 1660, 2013, including Special sections:
Cyber-enabled Distributed Computing for Ubiquitous Cloud and Network Services
& Cloud Computing and Scientific Applications Big Data, Scalable Analytics,
and Beyond. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0167739X13000241
[4] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Comput. Netw., vol. 54, no. 15, pp. 2787–2805, Oct. 2010. [Online]. Available:
http://dx.doi.org/10.1016/j.comnet.2010.05.010
[5] H. Sundmaeker, P. Guillemin, P. Friess, and S. Woelffl´e, “Vision and challenges for
realising the internet of things,” 2010.
[6] J. Belissent, “Getting clever about smart cities: New opportunities require new business
models,” 2010.
[7] O. Chipara, C. Lu, T. C. Bailey, and G.-C. Roman, “Reliable patient monitoring: A clini-
cal study in a step-down hospital unit,” Department of Computer Science & Engineering,
Washington University in St. Louis, Tech. Rep., 2009.
[8] J. Ko, J. H. Lim, Y. Chen, R. Musvaloiu-E, A. Terzis, G. M. Masson, T. Gao,
W. Destler, L. Selavo, and R. P. Dutton, “Medisn: Medical emergency detection in
sensor networks,” ACM Trans. Embed. Comput. Syst., vol. 10, no. 1, pp. 11:1–11:29,
Aug. 2010. [Online]. Available: http://doi.acm.org/10.1145/1814539.1814550
[9] G. Lopez, V. Custodio, and J. Moreno, “Lobin: E-textile and wireless-sensor-network-
based platform for healthcare monitoring in future hospital environments,” 2010 IEEE
Transactions on Information Technology in Biomedicine,, vol. 14, no. 6, pp. 1446–1458,
Nov 2010.
[10] I. Lee and K. Lee, “The internet of things (iot): Applications, investments,
and challenges for enterprises,” Business Horizons, vol. 58, no. 4, pp. 431
– 440, 2015. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0007681315000373
[11] B. M. Silva, J. J. Rodrigues, I. M. Lopes, T. M. Machado, and L. Zhou, “A novel coop-
eration strategy for mobile health applications,” 2013 IEEE Journal on Selected Areas
in Communications,, vol. 31, no. 9, pp. 28–36, September 2013.
[12] T. Machado, I. Lopes, B. Silva, J. Rodrigues, and J. Lloret, “Performance evaluation of
cooperation mechanisms for m-health applications,” in 2012 IEEE Global Communica-
tions Conf. (GLOBECOM),, Dec 2012, pp. 1664–1669.
[13] F. Canelo, B. Silva, J. Rodrigues, and Z. Zhu, “Performance evaluation of an enhanced
cryptography solution for m-health applications in cooperative environments,” in 2013
IEEE Global Communications Conf. (GLOBECOM),, Dec 2013, pp. 1711–1716.
[14] Z. Pang, J. Chen, D. Mendoza, Z. Zhang, J. Gao, Q. Chen, and L. Zheng, “Mobile and
wide area deployable sensor system for networked services,” in 2009 IEEE Sensors,, Oct
2009, pp. 1396–1399.
[15] M. Paschou, E. Sakkopoulos, E. Sourla, and A. Tsakalidis, “Health internet of
things: Metrics and methods for efficient data transfer,” Simulation Modelling
Practice and Theory, vol. 34, pp. 186 – 199, 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1569190X12001232
[16] Z. Pang, “Technologies and architectures of the internet-of-things (iot) for health and
well-being,” 2013.
[17] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor networks:
a survey,” Computer Networks, vol. 38, no. 4, pp. 393 – 422, 2002. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1389128601003024
[18] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,”
Computer Networks, vol. 52, no. 12, pp. 2292 – 2330, 2008. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1389128608001254
[19] I.-T. (2008), “Ubiquitous sensor networks (usn),” ITU-T Technology Watch Briefing
Report Series No. 4, February 2008.
[20] Q. Liu and Q. Liu, “A study on topology in computer network,” in 2014 7th Interna-
tional Conference on Intelligent Computation Technology and Automation (ICICTA),,
Oct 2014, pp. 45–48.
[21] H. Cao, V. Leung, C. Chow, and H. Chan, “Enabling technologies for wireless body
area networks: A survey and outlook,” 2009 IEEE Communications Magazine,, vol. 47,
no. 12, pp. 84–93, Dec 2009.
[22] A. Pantelopoulos and N. Bourbakis, “A survey on wearable sensor-based systems for
health monitoring and prognosis,” 2010 IEEE Transactions on Systems, Man, and Cy-
bernetics, Part C: Applications and Reviews,, vol. 40, no. 1, pp. 1–12, Jan 2010.
[23] S. Patel, H. Park, P. Bonato, L. Chan, M. Rodgers et al., “A review of wearable
sensors and systems with application in rehabilitation,” J Neuroeng Rehabil, vol. 9,
no. 12, pp. 1–17, 2012. [Online]. Available: http://www.ncbi.nlm.nih.gov/pmc/articles/
PMC3354997/pdf/
[24] V. Custodio, F. J. Herrera, G. L´opez, and J. I. Moreno, “A review on architectures
and communications technologies for wearable health-monitoring systems,” Sensors,
vol. 12, no. 10, pp. 13 907–13 946, 2012.
[25] A. Darwish and A. E. Hassanien, “Wearable and implantable wireless sensor network
solutions for healthcare monitoring,” Sensors, vol. 11, no. 6, pp. 5561–5595, 2011.
[26] B. Latr´e, B. Braem, I. Moerman, C. Blondia, and P. Demeester, “A survey on wireless
body area networks,” Wirel. Netw., vol. 17, no. 1, pp. 1–18, Jan. 2011. [Online].
Available: http://dx.doi.org/10.1007/s11276-010-0252-4
[27] A. Boulis, D. Smith, D. Miniutti, L. Libman, and Y. Tselishchev, “Challenges in body
area networks for healthcare: the mac,” 2012 IEEE Communications Magazine,, vol. 50,
no. 5, pp. 100–106, May 2012.
[28] S. Ullah, H. Higgins, B. Braem, B. Latre, C. Blondia, I. Moerman, S. Saleem,
Z. Rahman, and K. Kwak, “A comprehensive survey of wireless body area networks,”
Journal of Medical Systems, vol. 36, no. 3, pp. 1065–1094, 2012. [Online]. Available:
http://dx.doi.org/10.1007/s10916-010-9571-3
[29] U. Anliker, J.Ward, P. Lukowicz, G. Troster, F. Dolveck, M. Baer, F. Keita, E. Schenker,
F. Catarsi, L. Coluccini, A. Belardinelli, D. Shklarski, M. Alon, E. Hirt, R. Schmid, and
M. Vuskovic, “Amon: a wearable multiparameter medical monitoring and alert system,”
2004 IEEE Transactions on Information Technology in Biomedicine,, vol. 8, no. 4, pp.
415–427, Dec 2004.
[30] C. Mundt, K. Montgomery, U. Udoh, V. Barker, G. Thonier, A. Tellier, R. Ricks, B. Dar-
ling, Y. Cagle, N. Cabrol, S. Ruoss, J. Swain, J. Hines, and G. Kovacs, “A multipa-
rameter wearable physiologic monitoring system for space and terrestrial applications,”
2005 IEEE Transactions on Information Technology in Biomedicine,, vol. 9, no. 3, pp.
382–391, Sept 2005.
[31] V. Shnayder, B.-r. Chen, K. Lorincz, T. R. F. Jones, and M. Welsh, “Sensor networks for
medical care,” in SenSys, vol. 5, 2005, pp. 314–314.
[32] F. Hu, M. Jiang, L. Celentano, and Y. Xiao, “Robust medical ad hoc sensor networks
(masn) with wavelet-based fECGg data mining,” Ad Hoc Networks, vol. 6, no. 7, pp.
986 – 1012, 2008. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S157087050700145X
[33] Y.-D. Lee and W.-Y. Chung, “Wireless sensor network based wearable smart
shirt for ubiquitous health and activity monitoring,” Sensors and Actuators
B: Chemical, vol. 140, no. 2, pp. 390 – 395, 2009. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0925400509003724
[34] J. Ko, J. H. Lim, Y. Chen, R. Musvaloiu-E, A. Terzis, G. M. Masson, T. Gao,
W. Destler, L. Selavo, and R. P. Dutton, “Medisn: Medical emergency detection in
sensor networks,” ACM Trans. Embed. Comput. Syst., vol. 10, no. 1, pp. 11:1–11:29,
Aug. 2010. [Online]. Available: http://doi.acm.org/10.1145/1814539.1814550
[35] G. Inc, Android Developers, 2013. [Online]. Available: http://developer.android.com/
index.html
[36] P. McDermott-Wells, “What is bluetooth?” 2005 IEEE Potentials,, vol. 23, no. 5, pp.
33–35, Dec 2005.
[37] N. B.-N. I. Minar and M. Tarique, “Bluetooth security threats and solutions: a survey,”
International Journal of Distributed and Parallel Systems (IJDPS) Vol, vol. 3, pp. 122–
148, 2012.
[38] C. Gehrmann and K. Nyberg, “Enhancements to bluetooth baseband security,” in Pro-
ceedings of Nordsec, vol. 2001. Citeseer, 2001, pp. 191–230.
[39] H. Pieterse and M. S. Olivier, “Bluetooth command and control channel,”
Computers & Security, vol. 45, pp. 75 – 83, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167404814000881
[40] P. C. Dinh and S. Boonkrong, “The comparison of impacts to android phone battery
between polling data and pushing data,” in IISRO Multi-Conferences Proceeding. Thai-
land, 2013.
[41] G. Inc, Cloud Messaging. [Online]. Available: https://developers.google.com/
cloud-messaging/