研究生: |
陳孟琦 Meng-Chi, Chen |
---|---|
論文名稱: |
冬蟲夏草水萃液對量子點所引起之小鼠骨髓幹細胞分化抑制上的影響 Effects of Cordyceps sinensis on the inhibition of mice bone marrow cell differentiation by CdSe/ZnS quantum dots |
指導教授: |
江啟勳
Chi-Shiun, Chiang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 78 |
中文關鍵詞: | 冬蟲夏草 、量子點 、骨髓幹細胞 、分化 |
外文關鍵詞: | Cordyceps sinensis, quantum dots, bone marrow, differentiation |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
冬蟲夏草是中國人長久以來食用的中醫藥材,在許多研究中都指出冬蟲夏草有調節免疫的效果,在最近的研究中也指出冬蟲夏草水萃液有促進骨髓幹細胞分化的能力。量子點是目前備受矚目的新興螢光材料,因為其螢光表現的穩定度高,目前有許多研究運用為活細胞的追蹤劑。但近年研究發現量子點在不致細胞死亡的濃度下,對於骨髓幹細胞的標定會造成細胞分子層面上的改變,而抑制幹細胞的分化。本實驗旨在探討冬蟲夏草是否能減緩或阻止量子點對骨髓幹細胞分化的抑制作用。由本論文的實驗結果可以得知,由BMP的mRNA表現量、ALP的活性表現、鈣離子的表現量都可以看出量子點對於骨髓幹細胞的分化確實有抑制的情形;而冬蟲夏草水萃液對骨髓幹細胞的分化確實有促進的效果;結合冬蟲夏草水萃液來進行骨髓細胞的量子點標定,可以有效減緩量子點對骨髓細胞所造成分化抑制的情形。此外,我們也觀察冬蟲夏草水萃液對於活化蝕骨細胞的影響,發現冬蟲夏草水萃液能夠有效降低骨母細胞的RANKL表現量,有抑制蝕骨細胞分化成熟的潛力。
Cordyceps sinensis is Chinese herb medicine and is frequently used as immune regulator. Recently, Cordyceps sinensis hot-water extract has also been found to have effects on the differentiation of mice bone marrow cells. With the characteristics of high fluorescence intensity and stability, quantum dots have become the most popular fluorescent tracers in living cell imagings. However, several recent studies have shown that using quantum dots to label bone marrow stem cells could inhibit their differentiation processes. For this concern, we aim to see whether the administration of Cordyceps sinensis hot-water extract can reduce the inhibitory effect of quantum dots labeling on the differentiation of bone marrow stem cell. According to our study by measuring the mRNA expression level of BMP, the activity level of ALP and the level of calcium ions, we found that quantum dots have an inhibitory effect on mice bone marrow differentiation, which can be reduced by the administration of Cordyceps sinensis. Additionally, we also found that Cordyceps sinensis hot-water extract has opposite effect on osteoclast differentiation. We found that bone marrow stem cells treated with Cordyceps sinensis hot-water extract can reduce the mRNA expression level of RANKL in osteoblasts, which consequently reduced the osteoclast differentiation.
1. Xiao, Y.Q., [Studies on chemical constituents of Cordyceps sinensis I]. Zhong Yao Tong Bao, 1983. 8(2): p. 32-3.
2. Zhang, Q.X. and J.Y. Wu, Cordyceps sinensis mycelium extract induces human premyelocytic leukemia cell apoptosis through mitochondrion pathway. Exp Biol Med (Maywood), 2007. 232(1): p. 52-7.
3. Wu, Y., et al., Effect of various extracts and a polysaccharide from the edible mycelia of Cordyceps sinensis on cellular and humoral immune response against ovalbumin in mice. Phytother Res, 2006. 20(8): p. 646-52.
4. Wu, J.Y., Q.X. Zhang, and P.H. Leung, Inhibitory effects of ethyl acetate extract of Cordyceps sinensis mycelium on various cancer cells in culture and B16 melanoma in C57BL/6 mice. Phytomedicine, 2007. 14(1): p. 43-9.
5. Yamaguchi, Y., et al., Inhibitory effects of water extracts from fruiting bodies of cultured Cordyceps sinensis on raised serum lipid peroxide levels and aortic cholesterol deposition in atherosclerotic mice. Phytother Res, 2000. 14(8): p. 650-2.
6. Ngai, H.H., W.H. Sit, and J.M. Wan, The nephroprotective effects of the herbal medicine preparation, WH30+, on the chemical-induced acute and chronic renal failure in rats. Am J Chin Med, 2005. 33(3): p. 491-500.
7. Zhen, F., J. Tian, and L.S. Li, [Mechanisms and therapeutic effect of Cordyceps sinensis (CS) on aminoglycoside induced acute renal failure (ARF) in rats]. Zhongguo Zhong Xi Yi Jie He Za Zhi, 1992. 12(5): p. 288-91, 262.
8. Koh, J.H., et al., Activation of macrophages and the intestinal immune system by an orally administered decoction from cultured mycelia of Cordyceps sinensis. Biosci Biotechnol Biochem, 2002. 66(2): p. 407-11.
9. Chen, G.Z., et al., Effects of Cordyceps sinensis on murine T lymphocyte subsets. Chin Med J (Engl), 1991. 104(1): p. 4-8.
10. Gong, H.Y., K.Q. Wang, and S.G. Tang, [Effects of cordyceps sinensis on T lymphocyte subsets and hepatofibrosis in patients with chronic hepatitis B]. Hunan Yi Ke Da Xue Xue Bao, 2000. 25(3): p. 248-50.
11. Yang, J., et al., Effects of exopolysaccharide fraction (EPSF) from a cultivated Cordyceps sinensis fungus on c-Myc, c-Fos, and VEGF expression in B16 melanoma-bearing mice. Pathol Res Pract, 2005. 201(11): p. 745-50.
12. Chen, Y.J., et al., Effect of Cordyceps sinensis on the proliferation and differentiation of human leukemic U937 cells. Life Sci, 1997. 60(25): p. 2349-59.
13. Zhang, W., et al., Immunomodulatory and antitumour effects of an exopolysaccharide fraction from cultivated Cordyceps sinensis (Chinese caterpillar fungus) on tumour-bearing mice. Biotechnol Appl Biochem, 2005. 42(Pt 1): p. 9-15.
14. Nakamura, K., et al., Combined effects of Cordyceps sinensis and methotrexate on hematogenic lung metastasis in mice. Receptors Channels, 2003. 9(5): p. 329-34.
15. Nakamura, K., et al., Inhibitory effect of Cordyceps sinensis on spontaneous liver metastasis of Lewis lung carcinoma and B16 melanoma cells in syngeneic mice. Jpn J Pharmacol, 1999. 79(3): p. 335-41.
16. Yamaguchi, Y., et al., Antioxidant activity of the extracts from fruiting bodies of cultured Cordyceps sinensis. Phytother Res, 2000. 14(8): p. 647-9.
17. Chen, J., et al., Morphological and genetic characterization of a cultivated Cordyceps sinensis fungus and its polysaccharide component possessing antioxidant property in H22 tumor-bearing mice. Life Sci, 2006. 78(23): p. 2742-8.
18. Liu, W.C., et al., Protection against radiation-induced bone marrow and intestinal injuries by Cordyceps sinensis, a Chinese herbal medicine. Radiat Res, 2006. 166(6): p. 900-7.
19. Chan, W.C., et al., Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol, 2002. 13(1): p. 40-6.
20. Lin, Z., et al., Methods for labeling quantum dots to biomolecules. J Nanosci Nanotechnol, 2004. 4(6): p. 641-5.
21. Bentzen, E.L., et al., Surface modification to reduce nonspecific binding of quantum dots in live cell assays. Bioconjug Chem, 2005. 16(6): p. 1488-94.
22. Nehilla, B.J., T.Q. Vu, and T.A. Desai, Stoichiometry-dependent formation of quantum dot-antibody bioconjugates: a complementary atomic force microscopy and agarose gel electrophoresis study. J Phys Chem B Condens Matter Mater Surf Interfaces Biophys, 2005. 109(44): p. 20724-30.
23. Vu, T.Q., et al., Peptide-conjugated quantum dots activate neuronal receptors and initiate downstream signaling of neurite growth. Nano Lett, 2005. 5(4): p. 603-7.
24. Ballou, B., et al., Noninvasive imaging of quantum dots in mice. Bioconjug Chem, 2004. 15(1): p. 79-86.
25. Xue, F.L., et al., Enhancement of intracellular delivery of CdTe quantum dots (QDs) to living cells by Tat conjugation. J Fluoresc, 2007. 17(2): p. 149-54.
26. Rosen, A.B., et al., Finding Fluorescent Needles in the Cardiac Haystack: Tracking Human Mesenchymal Stem Cells Labeled with Quantum Dots for Quantitative In Vivo 3-D Fluorescence Analysis. Stem Cells, 2007.
27. Courty, S., et al., Tracking individual kinesin motors in living cells using single quantum-dot imaging. Nano Lett, 2006. 6(7): p. 1491-5.
28. Zhang, T., et al., Cellular effect of high doses of silica-coated quantum dot profiled with high throughput gene expression analysis and high content cellomics measurements. Nano Lett, 2006. 6(4): p. 800-8.
29. Tsay, J.M. and X. Michalet, New light on quantum dot cytotoxicity. Chem Biol, 2005. 12(11): p. 1159-61.
30. Cho, S.J., et al., Long-term exposure to CdTe quantum dots causes functional impairments in live cells. Langmuir, 2007. 23(4): p. 1974-80.
31. Choi, A.O., et al., Quantum dot-induced cell death involves Fas upregulation and lipid peroxidation in human neuroblastoma cells. J Nanobiotechnology, 2007. 5: p. 1.
32. Chan, W.H., N.H. Shiao, and P.Z. Lu, CdSe quantum dots induce apoptosis in human neuroblastoma cells via mitochondrial-dependent pathways and inhibition of survival signals. Toxicol Lett, 2006. 167(3): p. 191-200.
33. Wozney, J.M., Bone morphogenetic proteins. Prog Growth Factor Res, 1989. 1(4): p. 267-80.
34. Rickard, D.J., et al., Induction of rapid osteoblast differentiation in rat bone marrow stromal cell cultures by dexamethasone and BMP-2. Dev Biol, 1994. 161(1): p. 218-28.
35. Arai, M., et al., Effects of reactive oxygen species (ROS) on antioxidant system and osteoblastic differentiation in MC3T3-E1 cells. IUBMB Life, 2007. 59(1): p. 27-33.
36. Guise, T.A. and G.R. Mundy, Cancer and bone. Endocr Rev, 1998. 19(1): p. 18-54.
37. Hsieh, S.C., et al., The inhibition of osteogenesis with human bone marrow mesenchymal stem cells by CdSe/ZnS quantum dot labels. Biomaterials, 2006. 27(8): p. 1656-64.
38. Hsieh, S.C., et al., The internalized CdSe/ZnS quantum dots impair the chondrogenesis of bone marrow mesenchymal stem cells. J Biomed Mater Res B Appl Biomater, 2006. 79(1): p. 95-101.
39. Peister, A., et al., Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood, 2004. 103(5): p. 1662-8.
40. Gregory, C.A., et al., An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Anal Biochem, 2004. 329(1): p. 77-84.
41. Yoneda, T. and T. Hiraga, Crosstalk between cancer cells and bone microenvironment in bone metastasis. Biochem Biophys Res Commun, 2005. 328(3): p. 679-87.
42. Michigami, T., et al., Receptor activator of nuclear factor kappaB ligand (RANKL) is a key molecule of osteoclast formation for bone metastasis in a newly developed model of human neuroblastoma. Cancer Res, 2001. 61(4): p. 1637-44.
43. Seleverstov, O., et al., Quantum dots for human mesenchymal stem cells labeling. A size-dependent autophagy activation. Nano Lett, 2006. 6(12): p. 2826-32.
44. Yamano, T., L.A. DeCicco, and L.E. Rikans, Attenuation of cadmium-induced liver injury in senescent male fischer 344 rats: role of Kupffer cells and inflammatory cytokines. Toxicol Appl Pharmacol, 2000. 162(1): p. 68-75.
45. Miyahara, T., et al., Inhibitory effects of cadmium on in vitro calcification of a clonal osteogenic cell, MC3T3-E1. Toxicol Appl Pharmacol, 1988. 96(1): p. 52-9.
46. Miyahara, T., et al., Stimulative effects of cadmium on bone resorption in neonatal parietal bone resorption. Toxicology, 1992. 73(1): p. 93-9.
47. Lean, J.M., et al., A crucial role for thiol antioxidants in estrogen-deficiency bone loss. J Clin Invest, 2003. 112(6): p. 915-23.
48. Yip, K.H., et al., Thapsigargin modulates osteoclastogenesis through the regulation of RANKL-induced signaling pathways and reactive oxygen species production. J Bone Miner Res, 2005. 20(8): p. 1462-71.
49. Lee, D.H., et al., Effects of hydrogen peroxide (H2O2) on alkaline phosphatase activity and matrix mineralization of odontoblast and osteoblast cell lines. Cell Biol Toxicol, 2006. 22(1): p. 39-46.
50. Roodman, G.D., Biology of osteoclast activation in cancer. J Clin Oncol, 2001. 19(15): p. 3562-71.
51. Roodman, G.D., Regulation of osteoclast differentiation. Ann N Y Acad Sci, 2006. 1068: p. 100-9.
52. Sohara, Y., et al., Bone marrow mesenchymal stem cells provide an alternate pathway of osteoclast activation and bone destruction by cancer cells. Cancer Res, 2005. 65(4): p. 1129-35.
53. Roodman, G.D., Bone-breaking cancer treatment. Nat Med, 2007. 13(1): p. 25-6.