簡易檢索 / 詳目顯示

研究生: 李相儀
Hsiang-Yi Lee
論文名稱: 以機械合金法製備錫銀鎳銲料並探討鎳濃度與奈米級Ni3Sn4粉末對銲錫性質之影響
Influence of Ni Content and Ni3Sn4 Nanoparticles on Morphology of Sn-Ag-Ni Solders by Mechanical Alloying
指導教授: 杜正恭
Jenq-Gong Duh
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 113
中文關鍵詞: 機械合金無鉛銲錫界面反應錫銀鎳DSC
外文關鍵詞: Mechanical alloy, Ni3Sn4, interfacial reaction, SnAgNi, DSC
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討以機械合金法應用於錫銀鎳銲錫材料的製備並研究添加不同比例的鎳於Sn-3.5Ag-xNi銲錫粉末中(x=0.1, 0.5, 1.0, 1.5 與 2.0 wt.%),對粉末性質的影響。研究發現:當添加的鎳含量較低時(x=0.1, 0.5wt.%),粉末聚集成較大的碇狀顆粒,其尺寸大於100µm。當鎳含量增加(x=1.0, 1.5 與 2.0 wt.%),粉末會研磨並破碎成小於100µm的薄片。配合XRD與SEM結果,顯示添加的鎳含量越多,經延展、冷銲、破碎的過程後,產生散佈於銲錫粉末合金相總量亦增加,並在研磨過程中會對粉末尺寸造成影響。本文將探討此鎳含量的改變對研磨機制的影響,並藉由添加奈米(nano)等級之Ni3Sn4合金粉末,經機械研磨後,研究出有效的降低機械合金法製備之錫銀鎳銲錫粉末的方法。由DSC的分析結果得知:經機械研磨所製備之錫銀鎳銲料之熔點為217∼218oC,因此將適用於240oC之退火過程。
    在界面反應方面。經由240oC 迴銲3次後,將探討不同鎳含量(0.1∼2.0 wt.%)之錫銀鎳銲錫與電鍍銅之間的界面反應情形,並藉著場發電子微探儀(FE-EPMA)的定量分析,測定Cu6Sn5 IMC的生成,發現有微量的鎳固溶其中。本研究顯示隨著鎳的添加量增加,亦會造成Cu6Sn5 IMC厚度持續地增加,並發現有更多的鎳固溶在Cu6Sn5 IMC中。然而,在同樣的鎳含量下,於Ni-doped銲錫/電鍍銅界面所觀察為扇貝狀的Cu6Sn5 IMC,在Ni3Sn4-doped銲錫/電鍍銅界面卻觀察到鵝軟石狀的Cu6Sn5 IMC。並經多次迴銲發現:Ni3Sn4-doped銲錫/電鍍銅界面的(Cu,Ni)6Sn5厚度較Ni-doped銲錫/電鍍銅界面生成之(Cu,Ni)6Sn5厚度為厚。根據界面厚度差異,可由此得知Ni3Sn4-doped銲錫與純銅的界面反應較Ni-doped銲錫/電鍍銅快速且劇烈。
    在潤濕性方面,同樣鎳含量下,添加微量(x<0.5wt.%)奈米級Ni3Sn4粉末之錫銀鎳銲錫與電鍍銅比添加純鎳粉末之錫銀鎳銲錫形成較小的接觸角。總括來說,經退火後,以機械合金法自製的錫銀鎳錫膏與電鍍銅皆可形成接觸角小於25o之良好接合。


    Mechanical alloying (MA) process was employed as an alternative method to produce SnAgNi solder pastes in this study. The properties of solder powders were investigated by doping various Ni concentration into Sn-3.5Ag-xNi alloys (x=0.1, 0.5, 1.0, 1.5, and 2.0 wt. %). When the Ni concentration was low (x=0.1, 0.5 wt. %), MA particles agglomerated to a flat ingot with the particle size larger than 100μm. For higher Ni concentration (x= 1.0, 1.5, and 2.0 wt. %), MA particles turned to fragments and the particle size was below 100μm. The results of XRD and SEM revealed the formation of alloys dispersed in solder powders, which led to the decrease of particle size after flattening, cold welding and fracturing. It appeared that the particle size of solders was dependent on the Ni concentration. To reduce the particle size of SnAgNi alloys with low Ni concentration, Ni3Sn4 nanoparticles were further doped into Sn and Ag powders to derive the SnAgNi composite solder. For the Ni3Sn4-doped solder, the particle size was smaller than that of the Ni-doped solder. The distinction of milling mechanism for both Ni3Sn4-doped solder and Ni-doped solder by MA process was probed and discussed. Besides, the DSC results ensured the feasibility to apply the solder material for the reflow process.
    SnAgNi solder joints with Ni concentration from 0.1 to 2.0 wt.% after 3 times reflow at 240oC were employed to investigate the evolution of interfacial reaction between SnAgNi solders and electroplated Cu. For the Ni-doped solders, the Cu6Sn5 phase with little Ni was formed after deliberately quantitative analysis with field emission electron probe microanalyzer. The addition of Ni substantially increased the amount of intermetallic compound at the SnAgNi solders/Cu interface and also enhanced the dissolution of Ni in (Cu,Ni)6Sn5. By doping nano-sized Ni3Sn4 particles into Sn-Ag solder, the morphology of (Cu,Ni)6Sn5 IMC became pebble-shape. The thickness of (Cu,Ni)6Sn5 IMC was much larger in Ni3Sn4-doped solder than that in Ni-doped solder after multiple reflow times. Hence, the reaction at the interfaces of Ni3Sn4-doped solder/Cu was more rapid than that at Ni-doped solder/Cu.
    In addition, wettability test revealed that the wetting angles of Ni3Sn4-doped solder with low Ni concentration (0.1 and 0.5wt. %) were smaller than that of Ni-doped solder between solders and Cu substrate. The wetting angles of SnAgNi solders were also comparable with commercial Sn-3.5Ag and Sn-3.0Ag-0.5Cu solders on either Cu substrate or electroplated Ni metallization. Favorable wettability of the as-derived solder in this study was clearly demonstrated.

    Contents Table List IV Figure Captions V Abstract 1 Chapter I Introduction 4 Chapter II Literature Review 8 2.1 Electronic Package 8 2.1.1 Electronic Packaging Technology 8 2.1.2 Solder Materials 14 2.1.3 Composite Solders 17 2.2 Mechanical alloying 24 2.2.1 Introduction 24 2.2.2 Milling Mechanism 25 2.2.3 SnAgCu System 26 2.3 Joint Properties 35 2.3.1 Melting Temperature 35 2.3.2 Interfacial Reaction 35 2.3.3 Wettability 42 Chapter III Experimental Procedures 51 3.1 Fabrication of Lead Free Solder Pastes 51 3.1.1 Mechanical Alloying 51 3.1.2 Solder Pastes 52 3.2 Characterization of Powders 52 3.2.1 X-ray Diffraction 52 3.2.2 Differential Scanning Calorimetry (DSC) 52 3.2.3 Scanning Electron Microscope (SEM) 53 3.2.4 Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) 53 3.2.5 Wettabilty Test 53 3.3 Reflow Process 58 3.4 Microstructural Characterization of Solder Joints 58 Chapter IV Results and Discussion 63 4.1 The Influence of Ni Concentration and Ni3Sn4 Nanoparticles on Morphology of Sn-Ag-Ni Solders by Mechanical Alloying 63 4.1.1 Characteristics of MA powders and milling mechanisms 63 4.1.2 The influence of Ni concentration on morphology of SnAgNi solder 73 4.1.3 Effect of Ni3Sn4 doping on morphology of SnAgNi solders 78 4.1.4 Wetting properties of SnAgNi solders on different types of UBM 92 4.2 Interfacial reactions and compound formation of Sn-Ag-Ni solder and Sn-Ag solder doped with Ni3Sn4 nano particles produced by mechanical alloying on Cu substrate 95 4.2.1 The morphologies of Sn3.5AgxNi solder/electroplate Cu after 3 times reflow at 240oC 95 4.2.2 Effect of nano-sized Ni3Sn4 particles in SnAgNi solders on the characteristics of solder/electroplate Cu after 3 times reflow at 240oC 100 Chapter V Conclusions 106 References 108 Table list Table 2.1 Melting points of Pb-free solder compositions 20 Table 2.2 Activation energies for intermetallic formation for eutectic solder and composite solders 22 Table 2.3 Sessile drop parameters for surface tension calculation 46 Table 2.4 Contact angles of Sn-3.5Ag and Sn-3.5Ag-4Bi solder pastes on EN/Cu/Si at different temperature 47 Table 2.5 Contact angles of SnAgCu solder joints on electroless Ni-P at 240°C 51 Table 4.1 The onset temperature of Sn-3.5Ag-xNi powders measured by differential scanning calorimetry tester 77 Table 4.2 The average particle size of 94.5Sn-3.5Ag-2.0Ni MA powders milled after 10 hrs with different ratio of Ni to Ni3Sn4 powders 83 Table 4.3 ICP-AES results of Sn-3.5Ag-xNi solder powders milled after 30 hrs by MA process 91 Table 4.4 Contact angles of various MA solders and commercial solders on Cu/Si and electroplated Ni at 240°C 94 Table 4.5 The Ni content in (Cu, Ni)6Sn5 phase and solder matrix for pure Ni-doped and Ni3Sn4-doped solder joints after 3 times reflow at 240oC 103 Figure caption Fig. 2.1 Cross-section of a pin through hole connection of a microelectronics component on a printed wring board 10 Fig. 2.2 Cross-section of a surface mount connection of a microelectronics component with leads on a printed wring board 11 Fig. 2.3 Cross-section of a board grid array (BGA) microelectronics component 12 Fig. 2.4 Cross-section of a flip chip connection 13 Fig. 2.5 Thickness of the intermetallic layers at the solder/Cu substrate interface after annealing at 140˚C for 16 days 21 Fig. 2.6 Cross-sectional image of Sn3Ag0.5Cu solder/electroless Ni-P UBM interface after annealing at 240°C for 15 minutes (a) composite solder, (b) commercial solder, (c) MA solder. Figs. (d)~(f) were the enlarged view of Figs. (a)~(c). 23 Fig. 2.7 Narrow particle size distribution caused by tendency of small particles was welded together and larger particles fractured under steady-state conditions 28 Fig. 2.8 Schematic drawing of MA of ductile/brittle system 29 Fig. 2.9 SEI micrographs of various Sn-3.5Ag-xCu MA powders milled for 70hrs (a) Sn3.5Ag0.2Cu, (b) Sn3.5Ag0.7Cu, (c) Sn3.5Ag1Cu 30 Fig. 2.10 X-ray diffraction peaks of Sn-3.5Ag-xCu powders milled for 10hrs 31 Fig. 2.11 SEI micrograph of the Cu6Sn5 nano powder 32 Fig. 2.12 SEI of the Sn3.5Ag0.2Cu MA powders produced by milling Sn, Ag, and Cu6Sn5 nano powders together for 70 hrs 33 Fig. 2.13 DSC profiles of Sn-3.5Ag-0.2Cu MA powders milled for 70hrs (a) doped with Cu6Sn5 nano powder (b) without doping 34 Fig. 2.14 The electron micrographs for samples with different Ni additions reacted at 240oC for 2 min. The Cu6Sn5 phase is clearly visible for all four cases. For the Ni-doped solders, there is a small amount of Ni in the Cu6Sn5 phase according to the electron microprobe analysis 38 Fig. 2.15 Evolution of the microstructure for the reaction between Sn3.5Ag0.5Ni and Cu at 150oC 39 Fig. 2.16 (a) The zoom-in view for the two-region Ni-bearing Cu6Sn5 formed in the reaction between Sn3.5Ag1.0Ni and Cu. (b) Top-view morphology showing the outer region of the compound. The (Cu1-x,Nix)6Sn5 particles in the outer region have faceted surfaces. (c) Top-view morphology showing the outer region of the compound. (Cu1-y,Niy)6Sn5 particles in the outer region have rounded surfaces 40 Fig. 2.17 The total amounts of IMC formed at the interface at 240oC for different solders plotted against the square root of the reaction time 41 Fig. 2.18 The contact angle of a sessile drop/substrate 44 Fig. 2.19 Sessile drop profile 45 Fig. 3.1 (a)Fritsch Pulverisette ball mill. (b)illustration of the ball motion inside the ball mill 55 Fig. 3.2 The schematic diagram of the measurement system for the contact angle of melt solder pastes on substrates 56 Fig. 3.3 The schematic diagram of the environment chamber for measuring contact angles of the melt solder pastes on substrates 57 Fig. 3.4 The schematic diagram of the reflow oven for proofreading real temperature on Cu substrate 60 Fig. 3.5 The reflow profile in 5 zone oven 61 Fig. 3.6 The flow chart of overall experimental procedure 62 Fig. 4.1 SEI micrographs of 94.5Sn-3.5Ag-2.0Ni MA powders after various milling time(a) 10 hrs (b) 20 hrs (c) 30 hrs (d) 50hrs 65 Fig. 4.2 SEI micrographs of detailed microstructure of the 94.5Sn-3.5Ag-2.0Ni MA powders milled after various time (a) 10 hrs (b) 20 hrs 66 Fig. 4.3 SEI micrographs of 94.5Sn-3.5Ag-2.0Ni MA powders after 30 hrs milling, (a) cold welded region (A), and (b) an enlarged view inside the circle in (a), exhibiting the composite lamellar structure 67 Fig. 4.4 (a) SEI micrographs of 94.5Sn-3.5Ag-2.0Ni MA powders milled for 50 hrs, (b) An enlarged view in (a), showing that fakes started to aggregate and stacked to lump 70 Fig. 4.5 X-ray diffraction peaks of 94.5Sn-3.5Ag-2.0Ni powders (a) as-prepared, and milled for (b) 10 (c) 20 (d) 30 (e) 50 hours 71 Fig. 4.6 The particle size of 94.5Sn-3.5Ag-2.0Ni MA powders milled for various time 72 Fig. 4.7 The particle size of Sn-3.5Ag-xNi MA powders with various Ni content milled for 30 hrs 75 Fig. 4.8 X-ray diffraction peaks of Sn-3.5Ag-xNi powders milled after 30 hrs for various Ni contents, (a) x= 0.1, (b) x= 0.5, (c) x= 1.0 , (d) x= 1.5 , (e) x= 2.0 wt.% 76 Fig. 4.9 SEI micrograph of the Ni3Sn4 nano powders 81 Fig. 4.10 X-ray diffraction peaks of the Ni3Sn4 nano powders produced by chemical method. 82 Fig. 4.11 The particle size of 94.5Sn-3.5Ag-2.0Ni MA powders milled for 10 hours with various Ni3Sn4 contents 84 Fig. 4.12 SEI micrographs of 96.4Sn-3.5Ag-0.1Ni MA powders produced by milling for 30 hrs with (a) Sn, Ag, Ni and (b) Sn, Ag, Ni3Sn4 nanopowders 85 Fig. 4.13 SEI micrographs of 96.4Sn-3.5Ag-0.5Ni MA powders produced by milling for 30 hrs with (a) Sn, Ag, Ni and (b) Sn, Ag, Ni3Sn4 nanopowders 86 Fig. 4.14 SEI micrographs of 96.4Sn-3.5Ag-1.0Ni MA powders produced by milling for 30 hrs with (a) Sn, Ag, Ni and (b) Sn, Ag, Ni3Sn4 nanopowders 87 Fig. 4.15 DSC profiles of Sn-3.5Ag-xNi MA powders milled for 30 hrs with various Ni contents (a) x = 0.1, (b) x = 0.5, and (c) x = 1.0 wt.% 90 Fig. 4.16 The cross-sectional images of Sn-3.5Ag-xNi solder/ electroplated Cu interfaces after reflow at 240oC for 3 times, x= (a) 0.1 , (b) 1.0 , (c) 1.5 (d) 2.0 wt.% 97 Fig. 4.17 The enlarged view of cross-sectional images of Sn-3.5Ag-xNi solder/ electroplated Cu interfaces after reflow at 240oC for 3 times, x= (a) 0.1 , (b) 1.0 , (c) 1.5 (d) 2.0 wt.%. 98 Fig. 4.18 The amounts of Ni dissolved in Cu6Sn5 layer at solders/electroplated Cu interface after 3 times reflow at 240 oC 99 Fig. 4.19 Cross-sectional images of 95.5Sn-3.5Ag-1.0Ni solder/Cu interface after 3 times reflow at 240oC, (a) pure Ni-doped solder (b) Ni3Sn4-doped solder, indicating round and pebble-shape Cu6Sn5 particles, with some stacked at the interface, while some stripped to the solder side 104 Fig. 4.20 The average thickness of (Cu,Ni)6Sn5 layer of Sn-3.5Ag-xNi solders 105

    1. M. Abtew and G. Selvaduray, ‘‘Lead-free Solders in Microelectronics’’, Mat. Sci. Eng.: R: Reports, vol.27, 2000, pp.95-141.
    2. H. Reichl, A. Schubert and M. Töpper, ‘‘Reliability of Flip Chip and Chip Size Packages’’, Micro. Rel., vol. 40, 2000, pp.1243-1245.
    3. S. Topani, S. Gopakumar, P. Borgesen and K. Srihari, ‘‘Reliability of Lead-Free Solder Interconnections-A Review’’, 2002 annual reliability and maintainability symposium, (Piscataway, NJ: IEEE, 2002), pp.423-428.
    4. F. Guo, S. Choi, J. P. Lucas, K. N. Subramanian, Surf. MT. Thech., 13. 7 (2001).
    5. W. K. Choi and H. M. Lee, J. Electron. Mater. 28, 1251 (1999).
    6. J. G. Lee, F. Guo, K. N. Subramanian and J. P. Lucas, Solder. Surf. MT. Thech., 14, 11(2002).
    7. N. C. Lee, Chip Scale Review, March/April (2000), www.pb-free.com.
    8. IPC Road Map for Lead free Electronics Assemblies 2nd Draft, Nov (1999), www.leadfree.org
    9. A. Zribi, A. Clark, L. Zavalij, P. Borgesen and E. J. Cotts, J. Electron. Mater. 30, 1157 (2001).
    10. C. W. Hwang, J. G. Lee, K. Suganuma and H. Mori, J. Electron. Mater. 32, 52 (2003).
    11. K.S. Kim, S.H. Huh and K. Suganuma, Microelectron. Relia. 43, 259 (2003).
    12. W. K. Choi, J. H. Kim, S. W. Jeong and H. M. Lee, J. Mater. Res. 17, 43 (2002).
    13. I. E. Anderson, B. A. Cook, J. Harringa, and R. L. Terpstra, 31, 1166 (2002).
    14. Lucas, J. P., Guo, F., McDougall, J., Bieler, T. R., Subramanian, K. N. and Park. J. K., J. Electron. Mater. 28, 1268 (1999).
    15. W.R. Lewis, Notes on Soldering, Tin Research Institute, 1961, pp.66.
    16. R. B. Clough, A. J. Shapiro, G. K. Lucey, Mater. Sci. Tech-Lond. 10 (8): 696-701 AUG 1994
    17. D. Lin, G.X. Wang, T. S. Srivatsan, M. A. Hajri and M. Petraroli, Mater. Lett., 53, 333 (2002).
    18. H.S. Betrabet, S.M. McGee and J.K. McKinlay, Scripta Metall. 25, 2323 (1991).
    19. J. H. Lee, D. Park, J. T. Moon, Y. H. Lee, D. H. Shin, and Y. S. Kim, J. Electron. Mater. 29, 10 (2000)
    20. S.G. Zhang, B. C. Yang, B. Yang, J. Xu, L. K. Shi, X. X. Zhu. Acta Metallurgica Sinica 38 (8) 888 (2002)
    21. Lucas, J. P., Guo, F., McDougall, J., Bieler, T. R., Subramanian, K. N. and Park., J. K., J. Electron. Mater. 28, 1268 (1999).
    22. H. L. Lai and J. G. Duh, J. Electron. Mater. 32, 215 (2003)
    23. Y. Wu, J.A. Sees, C. Pouraghabagher, L.A. Foster, J.L. Marshall, E.G. Jacobs and R.F. Pinizzotto, J. Electron. Mater. 22, 769 (1993).
    24. M.L. Huang, C.M.L. Wu and J.K.L. Lai, J. Mat. Sci.: Mat. in Elec.11, 57 (2000).
    25. S. T, Kao and J.G. Duh, J. Electron. Mater., 33, 1445 (2004)
    26. C.M.L. Wu, M.L. Huang, J.K.L. Lai and Y.C. Chan, J. Electron. Mater. 29, 1015 (2000).
    27. M.L. Huang, C.M.L. Wu, J.K.L. Lai, and Y. C. Chan, J. Electron. Mater. 29, 1021 (2000).
    28. C. Suryanarayana, “Mechanical Alloying and milling”, Pro. In Mat. Sci., vol. 46, 2001, pp. 1-184.
    29. P. Y. Lee, J. L. Yang and H. M. Lin, J. Mat. Sci. 33, 235 (1998)
    30. J. S. Benjamin, “Mechanical Alloying”, Sci. Amer. Vol. 234, No. 5, 1976, pp. 40-48.
    31. C. Chen, C. E. Ho, A. H. Lin, G. L. Luo and C. R. Kao, J. Electron. Mater. 29, 1200 (2000)
    32. J. Y. Tsai, Y. C. Hu, C. M. Tsai and C. R. Kao, J. Electron. Mater.32, 1203 (2003).
    33. M. E. Loomans, S. Vaynman, G. Gosh and M. E. Fine, J. Electron. Mater. 23, 8, 741 (1994)
    34. S. T, Kao, Y. C. Lin and J.G. Duh, submitted to J. Electron. Mater.
    35. T.Y. Lee, W.J. Choi, K.N. Tu, J.W. Jang, S.M. Kuo, J.K. Lin, D.R. Frear, K.Zeng and J.K. Kivilahti, J. Mat. Res., 17, 291 (2002).
    36. S.K. Kang, H. Mavoori, S. Chada, et al., J. Electron. Mater. 30, 1049 (2001).
    37. P.T. Vianco, S.N. Burchett, M.K. Nielsen, et al., J. Electron. Mater. 28, 1127 (1999).
    38. M. E. Loomans and M. E. Fine, Mteal. Mat. Trans. A, 31A, 1155 (2000).
    39. T. M. Korhonen, P. Su, S. J. Hong, M. A. Korhonen and C. Y. Li, J. Electron. Mater. 29, 1194(2000).
    40. J.J. Jiang and M. Gasik, “An electrochemical investigation of mechanical alloying of MgNi-based hydrogen storage alloys”, J. Power Sources, Vol. 89, Issue 1, 2000, pp.117-124.
    41. N.H. Goo and K.S. Lee, “The electrochemical hydriding properties of Mg–Ni–Zr amorphous alloy”, Inter. J. Hydrogen Energy, Vol. 27, Issue 4, 2002, pp.433-438.
    42. L. Bolin, “Hardening and softening in mechanically alloyed iron-copper nanocrystalline solutions”, Metal Powder Report, Vol. 53, Issue 5, 1998, pp.38.
    43. C.M.L. Wu, M.L. Huang, J.K.L. Lai and Y.C. Chan, ‘‘Developing a Lead-Free Solder Alloy Sn-Bi-Ag-Cu by Mechanical Alloying’’, J. Elec. Mat., Vol.29, No.8, 2000, pp.1015-1020.
    44. M.L. Huang, C.M.L. Wu, J.K.L. Lai and Y.C. Chan, ‘‘Microstructural Evolution of a Lead-Free Solder Alloy Sn-Bi-Ag-Cu Prepared by Mechanical Alloying during Thermal Shock and Aging’’, J. Elec. Mat., Vol.29, No.8, 2000, pp.1021-1026.
    45. C.A. Harper, ‘‘Electronic Packaging and Interconnection Handbook’’, McGraw-Hill, New York, 2nd Ed., 1997.
    46. R.E. Reed-Hill, Physical Metallurgy Principles, PWS, Massachusetts, ISBN 0-53-492173-6, 1994, pp.306-307.
    47. S. K. Kang and Thmas G. Ference, J. Mater. Res. 8, 1063 (1993).
    48. F. Guo, J. Lee, J. P. Lucas, K. N. Subramanian, and T. R. Bieler, J. Electron. Mater. 30, 1222(2001).
    49. Chuang C.M. and Lin K. L., J. Electron. Mater. 32, 1426(2003).
    50. J. Y. Tsai, Y. C. Hu, C. M. Tsai and C. R. Kao, J. Electron. Mater.32, 1203(2003).
    51. L.E. Murr, “Interfacial Phenomena in Metals and Alloys”, Addison-Wesley, ISBN 0-201-04884-1
    52. P. Vianco, J. Rejent and R. Grant, Mater. Transactions 45 (2004) 765
    53. Z. Xia, Y. Shi, and Z. Chen, J. Mater. Eng. Perform., 11 (2002) 107
    54. E. Bradley and J. Hranisavljevic, IEEE T. Electron. Packge., 24 (2001) 255
    55. M. L. Huang, C. M. L. Wu, J. K. L. Lai, L. Wang , and F. G. Wang, J Mater. Sci.: Mater. EL, 11 (2000) 57
    56. P. T. Vianco, and J. A. Rejent, J. Electron. Mater., 28 (1999) 1127
    57. J. I. Goldstein, Scanning Elecron Microscopy and X-ray Microanalysis, Plenum Press, New York, (1981).
    58. R. R. Chromik, R. P. Vinci, S. L. Allen, and M. R. Notis, J. Mater. Res. 18, 2251 (2003)
    59. G. Y. Jang, J. W. Lee and J. G. Duh, J. Electron. Mater. 33, 1103 (2004)
    60. L. Lu, M. O. Lai, and S. Zhang, J. Mater. Process. Technol. 67, 100 (1997).
    61. F. Guo, J. Lee, S. Choi, J. P. Lucas, T. R. Bieler and, K. N. Subramanian, J. Electron. Mater. 30, 1073 (2001).
    62. Y. Wu, J. A. Sees, C. Pouraghabagher, L. A. Foster, J. L. Marshall, E. G. Jacobs and R. F. Pinizzotto, J. Electron. Mater., 22, 769 (1993)
    63. S. Choi, T. R. Bieler, J. P. Lucas and K. N. Subramanian, J. Electron. Mater., 28, 1209 (1999)
    64. S. T. Kao and J. G. Duh, submitted to J. Electron. Mater.
    65. E. Ho, Y. L. Lin, and C. R. Kao, Chem. Mater., 14, 949, (2002)
    66. C. S. Hung and J. G. Duh, J. Electron. Mater.,18, 935 (2003)
    67. L. Ye, Z. H. Lai, j. Liu and A Thölén, Solder. Surf. Mt, Tech., 13, 16 (2001).
    68. M. O. Alam, Y. C. Chan, and K. N. Tu, J. Appl. Phys., 94, 7904 (2003)
    69. C. Y. Liu, J. Li, G. J. Vandentop, W. J. Choi and K. N. Tu, J. Electron. Mater. 30, 521 (2001)
    70. S. W. Chen, S. H. Wu, and S. W. Lee, J. Electron. Mater. 32, 1188 (2003)
    71. J. Sigelko S. Choi, K. N. Subramanian, and J. P. Lucas, J. Electron. Mater. 29, 1307 (2000)
    72. C. M. Chuang and K. L. Lin, J. Electron. Mater. 32, 1426 (2003)
    73. M. McCormack, G. W. Kammlott, H. S. Chen and S. Jin, Appl. Phys. Lett., 65, 1233 (1994)
    74. D.R. Frear, S.N. Burchett, H.S. Morgan, and J.H. Lau, eds., The Mechanics of Solder Alloy Interconnects, p. 60 (Van Nostrand Reinhold, New York, 1994)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE