簡易檢索 / 詳目顯示

研究生: 黃凱群
Huang, Kai-Chun
論文名稱: 以TRACE程式進行馬鞍山電廠全黑事故分析與斷然處置策略之探討
Analysis of Maanshan Station Blackout Accident and Ultimate Response Guideline using TRACE Code
指導教授: 施純寬
Shih, Chunkuan
王仲容
Wang, Jong-Rong
口試委員: 施純寬
王仲容
林浩慈
陳紹文
蔡炅彣
學位類別: 碩士
Master
系所名稱: 原子科學院 - 核子工程與科學研究所
Nuclear Engineering and Science
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 98
中文關鍵詞: 電廠全黑斷然處置馬鞍山電廠TRACE
外文關鍵詞: Station blackout, URG, Maanshan, TRACE
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用美國核管會最新開發之最佳估算熱水流系統程式TRACE模擬分析台灣電力公司馬鞍山電廠全黑事故,以及斷然處置程序之執行,並探討斷然處置程序在面對複合式災變發生時的事故緩和能力。馬鞍山電廠為美國西屋公司所設計之三迴路壓水式電廠,其一號機於民國90年時曾經發生過一起為時兩小時之電廠全黑事故。本研究先利用經過電廠起動測試驗證之馬鞍山電廠TRACE輸入模式進行民國90年馬鞍山電廠全黑事故之模擬,隨後再利用此輸入模式模擬馬鞍山電廠假想電廠全黑事故、全黑事故執行斷然處置程序以及斷然處置相關之靈敏度分析。
    日本福島核子事故顯示出電廠在面對超過設計基準事故時緊急替代設備與人員訓練的不足。面對類福島事故,除了強化電廠設施外,亦必須要具備一套明確且快速的處置策略。台灣電力公司提出斷然處置程序之目的為在事故發生初期便立即進行蒸汽產生器以及反應爐之降溫降壓操作,若廠內正規注水系統不可用,則同時利用替代注水設備執行蒸汽產生器或反應爐注水,以確保核燃料被水覆蓋。在本研究所假設之前提下,模擬結果顯示斷然處置程序應用於電廠全黑事故時,可成功防止核燃料裸露。
    考慮到替代注水設備以及列置時間可能受限於廠內設施毀損程度,本研究探討可確保核燃料被水覆蓋之最小替代注水流量以及最慢替代注水準備時間。模擬結果顯示,每台蒸汽產生器替代注水流量至少必須大於40 gpm,且必須最遲於電廠全黑發生後3小時內準備完成並且注入。此外,本研究亦評估發生反應器冷卻水泵軸封洩漏事故對反應爐水位造成之影響。模擬結果顯示,若發生21 gpm/pump之洩漏事故,反應爐水位將於70小時後降至燃料頂端,對於此,廠內緊急交流電源必須盡快恢復,或是進行反應器冷卻水系統替代注水,以防止核燃料裸露。


    This research focuses on the analysis of station blackout (SBO) accident in Maanshan nuclear power station and the mitigation capability of SBO response strategy so called the ultimate response guideline (URG) by using TRACE code. Maanshan NPS is a Westinghouse 3-loops PWR power station. In year 2001, a real SBO accident happened in unit 1 of Maanshan NPS. This research uses the input model that has verified with plant startup test to simulate the SBO accident happened in 2001, and then analyze hypothetical SBO accident with URG and other sensitivity studies by using this verified model.

    Main action of URG including steam generator (SG) and reactor coolant system (RCS) depressurization, and SG injection by using alternate equipment if onsite regular injection systems aren’t available. The simulation results of SBO accident with URG show that, by executing the URG during SBO can keep the nuclear fuels covered with water and prevent fuel cladding from damage.

    Considering the SG injection capability and preparation time may be an uncertainty during SBO, the research evaluates the minimum required injection flow rate to be 40 gpm/SG and the preparation time no more than 3 hours in order to keeps the fuels covered with water. Furthermore, if a 21 gpm/pump leakage rate of reactor coolant pump (RCP) seal LOCA happens during SBO with URG executed, simulation result shows that reactor water level will drop to TAF in 70 hours. Therefore, RCS alternate injection and quick restoration of onsite AC power should be considered to maintain the reactor water level if RCP seal LOCA happens.

    摘要 i ABSTRACT ii 誌謝 iii 目錄 v 表目錄 vii 圖目錄 viii 第一章 緒論 1 1.1 研究動機與目的 1 1.2 論文架構與模擬案例簡介 2 第二章 文獻回顧 4 第三章 TRACE程式、馬鞍山電廠以及輸入模式介紹 7 3.1 TRACE程式介紹 7 3.2 馬鞍山電廠(核三廠)介紹 8 3.3 馬鞍山電廠TRACE模式介紹 9 3.3.1 馬鞍山電廠TRACE輸入模式 9 3.3.2 馬鞍山電廠TRACE模式穩態計算結果 11 3.3.3 馬鞍山電廠動畫模式 11 第四章 馬鞍山電廠318全黑事故模擬 32 4.1 馬鞍山電廠318全黑事故簡介 32 4.2 馬鞍山電廠318全黑事故模擬方法 32 4.3 馬鞍山電廠318全黑事故模擬結果 34 4.4 馬鞍山電廠318全黑事故模擬之結論 34 第五章 電廠全黑與斷然處置分析 47 5.1 電廠全黑分析 47 5.1.1 全黑事故描述 47 5.1.2 全黑事故模擬方法 48 5.1.3 全黑事故模擬結果 49 5.2 斷然處置程序分析 50 5.2.1 斷然處置程序介紹 50 5.2.2 斷然處置程序模擬方法 52 5.2.3 斷然處置程序模擬結果 53 5.3 結果與討論 54 第六章 斷然處置程序之靈敏度分析 75 6.1 斷然處置程序所需之最小蒸汽產生器注水流量 75 6.2 斷然處置程序蒸汽產生器替代注水之最慢準備時間 76 6.3 反應器冷卻水泵軸封洩漏於斷然處置中造成之影響 78 第七章 結論與建議 94 7.1 結論 94 7.2 建議 95 參考文獻 96

    [1] MELCOR Computer Code Manuals Vol.1: Primer and Users’ Guide, Sandia National Laboratories
    [2] TRACE V5.0 USER’S MANUAL, U. S. Nuclear Regulatory Commission
    [3] J. Freixa, A. Manera, “Analysis of an RPV upper head SBLOCA at the ROSA facility using TRACE”, Nuclear Engineering and Design, Volume 240, Issue 7, July 2010, Pages 1779-1788
    [4] J. Freixa, Tae-Wan Kim, A. Manera, “Thermal-hydraulic analysis of an intermediate LOCA test at the ROSA facility including uncertainty evaluation”, Nuclear Engineering and Design, Volume 249, August 2012, Pages 97-103
    [5] J. Freixa, A. Manera, “Verification of a TRACE EPRTM model on the basis of a scaling calculation of an SBLOCA ROSA test”, Nuclear Engineering and Design, Volume 241, Issue 3, March 2011, Pages 888-896
    [6] Konstantin Nikitin, Annalisa Manera, “Analysis of an ADS spurious opening event at a BWR/6 by means of the TRACE code”, Nuclear Engineering and Design, Volume 241, Issue 6, June 2011, Pages 2240-2247
    [7] 張佳穎,「龍門電廠TRACE/PARCS模式建立與應用」,國立清華大學核子工程與科學研究所,碩士論文,中華民國一百零一年
    [8] 林冠源,「國聖電廠類福島全黑事故之模擬與分析」,國立清華大學核子工程與科學研究所,碩士論文,中華民國一百零一年
    [9] 莊偉翔,「IIST之TRACE模型建立與實驗案例驗證」,國立清華大學核子工程與科學研究所,碩士論文,中華民國一百零一年
    [10] Y. H. Cheng, C. Shih, J. R. Wang, H. T. Lin, “An investigation of steam–water countercurrent flow model in TRACE”, Annals of Nuclear Energy, Volume 37, Issue 10, October 2010, Pages 1378-1383
    [11] J. R. Wang, H. T. Lin, Y. H. Cheng, W. C. Wang, C. Shih, “TRACE modeling and its verification using Maanshan PWR start-up tests”, Annals of Nuclear Energy, Volume 36, Issue 4, 1 May 2009, Pages 527-536
    [12] Y. H. Cheng, J. R. Wang, H. T. Lin, C. Shih, “Benchmark calculations of pressurizer model for Maanshan nuclear power plant using TRACE code”, Nuclear Engineering and Design, Volume 239, Issue 11, November 2009, Pages 2343-2348
    [13] J. H. Yang, J. R. Wang, H. T. Lin, C. Shih, “LBLOCA analysis for the Maanshan PWR nuclear power plant using TRACE”, Energy Procedia, Volume 14, 2012, Pages 292-297
    [14] K. Vierowa, Y. Liao, J. Johnson, M. Kenton, R. Gauntt, “Severe accident analysis of a PWR station blackout with the MELCOR, MAAP4 and SCDAP/RELAP5 codes”, Nuclear Engineering and Design, Volume 234, Issues 1–3, December 2004, Pages 129-145
    [15] Changwook Huh, Namduk Suh, Goon-Cherl Park, “Optimum RCS depressurization strategy for effective severe accident management of station black out accident”, Nuclear Engineering and Design, Volume 239, Issue 11, November 2009, Pages 2521-2529
    [16] H. Esmaili, D. Helton, D. Marksberry, R. Sherry, P. Appignani, D. Dube, M. Tobin, R. Buell, T. Koonce, J. Schroeder, “Confirmatory Thermal-Hydraulic Analysis to Support Specific Success Criteria in the Standardized Plant Analysis Risk Models – Surry and Peach Bottom (NUREG-1953)”, USNRC NUREG Report, September 2011
    [17] T.J. Heames, R.C. Smith, “Integrated MELPROG/TRAC analyses of a PWR station blackout”, Nuclear Engineering and Design, Volume 125, Issue 2, 1 February 1991, Pages 175-188
    [18] Andrija Volkanovski, Andrej Prosek, “Extension of station blackout coping capability and implications on nuclear safety”, Nuclear Engineering and Design, Volume 255, February 2013, Pages 16-27
    [19] T. C. WANG, S. J. WANG, J. T. TENG, “Simulation of A PWR Reactor Vessel Level Indicating System During Station Blackout with MELCOR 1.8.5”, Nuclear Technology, Volume 156, Number 2, Pages 133-139, November 2006
    [20] K.S. Liang, S.C. Chiang, Y.F. Hsu, H.J. Young, B.S. Pei, L.C. Wang, “The ultimate emergency measures to secure a NPP under an accidental condition with no designed power or water supply”, Nuclear Engineering and Design, Vol. 253, Issue 4, December 2012, pp. 259–268
    [21] Pressurized Water Reactor (PWR) Systems Concepts Manual, USNRC Technical Training Center
    [22] 馬鞍山電廠訓練教材
    [23] Taiwan Power Company, “Maanshan Nuclear Power Station Final Safety Analysis Report (FSAR)”, 1987
    [24] 行政院原子能委員會,「核三廠一號機三月十八日喪失廠內外交流電源事件調查報告」,中華民國九十年
    [25] 10 CFR 50.2 - Definitions, Code of Federal Regulations
    [26] 台灣電力公司馬鞍山電廠機組斷然處置程序指引
    [27] 台電公司核能電廠安全防護總體檢報告,中華民國100年5月7日

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE