研究生: |
比沙爾納哈克 Nahak, Bishal Kumar |
---|---|
論文名稱: |
用於高效制氫的碳量子點支撐 CdS 光催化劑的形態誘導缺陷和晶體工程 Morphology-Induced Defects and Crystal Engineering of Carbon Quantum Dot-Supported CdS Photocatalysts for Efficient Hydrogen Production |
指導教授: |
曾繁根
Tseng, Fan-Gang |
口試委員: |
胡哲嘉
Hu, Chechia 陳燦耀 Chen, Tsan-Yao |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 119 |
中文關鍵詞: | 硫化鎘 、硫化鎘 、硫空位 、方面工程 、光催化 、氫氣 |
外文關鍵詞: | Cadmium Sulphide, Cadmium Sulphide, Sulphur Vacancy, Facet Engineering, Photocatalysis, Hydrogen generation |
相關次數: | 點閱:46 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
光致發光碳量子點(CQD)由於其優異的光學性質、強的限域效應和良好的導電性而引起了人們的廣泛關注。然而,CQD的可持續合成及其在水分解中的應用尚未得到很好的探索。在此,我們從葡萄糖合成了CQD和氮摻雜CQD,並透過水熱法將它們修飾到CdS奈米球上。使用各種光譜、顯微鏡和電化學技術對合成的光催化劑進行了徹底的表徵。據觀察,CQD 中氮的存在會導致活性位點阻塞,從而減少表面積。所開發的 CQD 負載 CdS 奈米球顯示光催化羅丹明 B 染料在 60 分鐘內降解 97%,並在 10 小時 產生 80,450 μmolg-1 的氫氣。發現CQD的最佳負載量為3mL,進一步增加CQD的量會阻礙光與光催化劑的相互作用。
為了進一步提高產氫率,CdS 奈米花具有一種新穎的尺寸依賴性光穩定性,及其對硫空位和晶面的影響。為了進一步增強光催化性能,我們在 CdS 奈米結構上引入了CQD。所得複合材料表現出令人印象深刻的可見光響應氫生成速率,高達 120748 µmolg-1。這歸因於暴露的 CdS (002) 晶面和增加的硫空位有助於在延長的 30 小時內實現更好的電荷分離和更高的穩定性,這可以從 PL 曲線的壽命延長得到證明。所開發的光催化劑的可持續性透過綠豆植物生長進行了測試,證實了其環境友善性。
Photoluminescent carbon quantum dots (CQD) have drawn intense attention due to its excellent optical properties, strong confinement effect, and good electrical conductivity. However, sustainable synthesis of CQD and its application in water splitting has not been well explored. Herein, we synthesized CQD, and nitrogen doped CQD from glucose and decorated them onto CdS nanospheres via hydrothermal method. The synthesized photocatalysts were thoroughly characterized using various spectroscopic, microscopic, and electrochemical techniques. It was observed the presence of nitrogen at CQD causes blocking of active sites that reduces the surface area. The developed CQD loaded CdS nanospheres showed a photocatalytic Rhodamine B dye degradation of 97% in 60 min and hydrogen generation of 80,450 μmolg-1 in 10 hr. The optimal amount of CQD loading was found to be 3mL, further increasing the CQD amount hinders the light interaction with photocatalyst.
Further to enhance the hydrogen generation yield, a novel size dependent photostability of CdS nanoflowers has been reported, along its effect on sulphur vacancies and crystal facet. To further augment the photocatalytic performance, we introduce CQDs on CdS nanostructures. The resulting composite exhibited an impressive visible-light-responsive hydrogen generation rate of 120748 µmolg-1. This attributed to exposed CdS (002) crystal facet with increased sulphur vacancy helped in attaining better charge separation and increased stability over an extended 30-hour period, which can be evidenced from increased lifetime from PL curves. The sustainability of developed photocatalyst was tested via Vigna Radiata plant growth, that confirms its environmental friendliness.
References
[1] J.G.J. Olivier, J. a. H.W. Peters, G. Janssens-Maenhout, Trends in global CO2 emissions. 2012 Report, (2012). https://doi.org/10.2788/33777.
[2] W.-T. Tsai, C.-H. Tsai, Interactive analysis of green building materials promotion with relevance to energy consumption and greenhouse gas emissions from Taiwan’s building sector, Energy and Buildings. 261 (2022) 111959. https://doi.org/10.1016/j.enbuild.2022.111959.
[3] T. Kober, H.-W. Schiffer, M. Densing, E. Panos, Global energy perspectives to 2060 – WEC’s World Energy Scenarios 2019, Energy Strategy Reviews. 31 (2020) 100523. https://doi.org/10.1016/j.esr.2020.100523.
[4] C.-S. Lin, F.-M. Liou, C.-P. Huang, Grey forecasting model for CO2 emissions: A Taiwan study, Applied Energy. 88 (2011) 3816–3820. https://doi.org/10.1016/j.apenergy.2011.05.013.
[5] Y.-H. Wu, C.-H. Liu, M.-L. Hung, T.-Y. Liu, T. Masui, Sectoral energy efficiency improvements in Taiwan: Evaluations using a hybrid of top-down and bottom-up models, Energy Policy. 132 (2019) 1241–1255. https://doi.org/10.1016/j.enpol.2019.06.043.
[6] C.-T. Chang, C.-H. Yang, T.-P. Lin, Carbon dioxide emissions evaluations and mitigations in the building and traffic sectors in Taichung metropolitan area, Taiwan, Journal of Cleaner Production. 230 (2019) 1241–1255. https://doi.org/10.1016/j.jclepro.2019.05.006.
[7] Dual-Function Materials for CO2 Capture and Conversion: A Review | Industrial & Engineering Chemistry Research, (n.d.). https://pubs.acs.org/doi/full/10.1021/acs.iecr.0c02218 (accessed December 22, 2023).
[8] I. Sullivan, A. Goryachev, I.A. Digdaya, X. Li, H.A. Atwater, D.A. Vermaas, C. Xiang, Coupling electrochemical CO2 conversion with CO2 capture, Nat Catal. 4 (2021) 952–958. https://doi.org/10.1038/s41929-021-00699-7.
[9] S.R. Chia, K.W. Chew, H.Y. Leong, S.-H. Ho, H.S.H. Munawaroh, P.L. Show, CO2 mitigation and phycoremediation of industrial flue gas and wastewater via microalgae-bacteria consortium: Possibilities and challenges, Chemical Engineering Journal. 425 (2021) 131436. https://doi.org/10.1016/j.cej.2021.131436.
[10] F. Nocito, A. Dibenedetto, Atmospheric CO2 mitigation technologies: carbon capture utilization and storage, Current Opinion in Green and Sustainable Chemistry. 21 (2020) 34–43. https://doi.org/10.1016/j.cogsc.2019.10.002.
[11] H. Stančin, H. Mikulčić, X. Wang, N. Duić, A review on alternative fuels in future energy system, Renewable and Sustainable Energy Reviews. 128 (2020) 109927. https://doi.org/10.1016/j.rser.2020.109927.
[12] P. Capros, G. Zazias, S. Evangelopoulou, M. Kannavou, T. Fotiou, P. Siskos, A. De Vita, K. Sakellaris, Energy-system modelling of the EU strategy towards climate-neutrality, Energy Policy. 134 (2019) 110960. https://doi.org/10.1016/j.enpol.2019.110960.
[13] L. Li, B. Wang, K. Jiao, M. Ni, Q. Du, Y. Liu, B. Li, G. Ling, C. Wang, Comparative techno-economic analysis of large-scale renewable energy storage technologies, Energy and AI. 14 (2023) 100282. https://doi.org/10.1016/j.egyai.2023.100282.
[14] M. Jeuland, M. McClatchey, S.R. Patil, S.K. Pattanayak, C.M. Poulos, J.-C. Yang, Do Decentralized Community Treatment Plants Provide Clean Water? Evidence from Rural Andhra Pradesh, India, Land Economics. 97 (2021) 345–371. https://doi.org/10.3368/le.97.2.345.
[15] P. Krzeminski, M.C. Tomei, P. Karaolia, A. Langenhoff, C.M.R. Almeida, E. Felis, F. Gritten, H.R. Andersen, T. Fernandes, C.M. Manaia, L. Rizzo, D. Fatta-Kassinos, Performance of secondary wastewater treatment methods for the removal of contaminants of emerging concern implicated in crop uptake and antibiotic resistance spread: A review, Science of The Total Environment. 648 (2019) 1052–1081. https://doi.org/10.1016/j.scitotenv.2018.08.130.
[16] S. Raju, M. Carbery, A. Kuttykattil, K. Senthirajah, A. Lundmark, Z. Rogers, S. Scb, G. Evans, T. Palanisami, Improved methodology to determine the fate and transport of microplastics in a secondary wastewater treatment plant, Water Research. 173 (2020) 115549. https://doi.org/10.1016/j.watres.2020.115549.
[17] X. Liu, Z. Chen, W. Du, P. Liu, L. Zhang, F. Shi, Treatment of wastewater containing methyl orange dye by fluidized three dimensional electrochemical oxidation process integrated with chemical oxidation and adsorption, Journal of Environmental Management. 311 (2022) 114775. https://doi.org/10.1016/j.jenvman.2022.114775.
[18] M. Han, H. Wang, W. Jin, W. Chu, Z. Xu, The performance and mechanism of iron-mediated chemical oxidation: Advances in hydrogen peroxide, persulfate and percarbonate oxidation, Journal of Environmental Sciences. 128 (2023) 181–202. https://doi.org/10.1016/j.jes.2022.07.037.
[19] Y. Chen, X. Duan, X. Zhou, R. Wang, S. Wang, N. Ren, S.-H. Ho, Advanced oxidation processes for water disinfection: Features, mechanisms and prospects, Chemical Engineering Journal. 409 (2021) 128207. https://doi.org/10.1016/j.cej.2020.128207.
[20] J. Wang, S. Wang, Reactive species in advanced oxidation processes: Formation, identification and reaction mechanism, Chemical Engineering Journal. 401 (2020) 126158. https://doi.org/10.1016/j.cej.2020.126158.
[21] A. Saravanan, V.C. Deivayanai, P.S. Kumar, G. Rangasamy, R.V. Hemavathy, T. Harshana, N. Gayathri, K. Alagumalai, A detailed review on advanced oxidation process in treatment of wastewater: Mechanism, challenges and future outlook, Chemosphere. 308 (2022) 136524. https://doi.org/10.1016/j.chemosphere.2022.136524.
[22] Transitional metal chalcogenide nanostructures for remediation and energy: a review | Environmental Chemistry Letters, (n.d.). https://link.springer.com/article/10.1007/s10311-021-01269-w (accessed December 22, 2023).
[23] P.V. Kamat, K. Sivula, Celebrating 50 Years of Photocatalytic Hydrogen Generation, ACS Energy Lett. 7 (2022) 3149–3150. https://doi.org/10.1021/acsenergylett.2c01889.
[24] B. Liu, H. Wu, I.P. Parkin, New Insights into the Fundamental Principle of Semiconductor Photocatalysis, ACS Omega. 5 (2020) 14847–14856. https://doi.org/10.1021/acsomega.0c02145.
[25] D. Zhu, Q. Zhou, Action and mechanism of semiconductor photocatalysis on degradation of organic pollutants in water treatment: A review, Environmental Nanotechnology, Monitoring & Management. 12 (2019) 100255. https://doi.org/10.1016/j.enmm.2019.100255.
[26] C. Karthikeyan, P. Arunachalam, K. Ramachandran, A.M. Al-Mayouf, S. Karuppuchamy, Recent advances in semiconductor metal oxides with enhanced methods for solar photocatalytic applications, Journal of Alloys and Compounds. 828 (2020) 154281. https://doi.org/10.1016/j.jallcom.2020.154281.
[27] S. Zhong, Y. Xi, S. Wu, Q. Liu, L. Zhao, S. Bai, Hybrid cocatalysts in semiconductor-based photocatalysis and photoelectrocatalysis, Journal of Materials Chemistry A. 8 (2020) 14863–14894. https://doi.org/10.1039/D0TA04977H.
[28] Q. Li, H. Meng, P. Zhou, Y. Zheng, J. Wang, J. Yu, J. Gong, Zn1–xCdxS Solid Solutions with Controlled Bandgap and Enhanced Visible-Light Photocatalytic H2-Production Activity, ACS Catal. 3 (2013) 882–889. https://doi.org/10.1021/cs4000975.
[29] F. Costantino, P.V. Kamat, Do Sacrificial Donors Donate H2 in Photocatalysis?, ACS Energy Lett. 7 (2022) 242–246. https://doi.org/10.1021/acsenergylett.1c02487.
[30] J. Zhang, Y. Lei, S. Cao, W. Hu, L. Piao, X. Chen, Photocatalytic hydrogen production from seawater under full solar spectrum without sacrificial reagents using TiO2 nanoparticles, Nano Res. 15 (2022) 2013–2022. https://doi.org/10.1007/s12274-021-3982-y.
[31] N.S. Gultom, H. Abdullah, D.-H. Kuo, Effects of graphene oxide and sacrificial reagent for highly efficient hydrogen production with the costless Zn(O,S) photocatalyst, International Journal of Hydrogen Energy. 44 (2019) 29516–29528. https://doi.org/10.1016/j.ijhydene.2019.08.066.
[32] Y. Jiang, L. Mao, J. Shi, B. Zheng, X. Guan, F. Liu, Effects of mixed sacrificial reagents on hydrogen evolution over typical photocatalysts, JPE. 10 (2019) 023503. https://doi.org/10.1117/1.JPE.10.023503.
[33] M. Ismael, Latest progress on the key operating parameters affecting the photocatalytic activity of TiO2-based photocatalysts for hydrogen fuel production: A comprehensive review, Fuel. 303 (2021) 121207. https://doi.org/10.1016/j.fuel.2021.121207.
[34] H. Enzweiler, P.H. Yassue-Cordeiro, M. Schwaab, E. Barbosa-Coutinho, M.H.N. Olsen Scaliante, N.R.C. Fernandes, Catalyst concentration, ethanol content and initial pH effects on hydrogen production by photocatalytic water splitting, Journal of Photochemistry and Photobiology A: Chemistry. 388 (2020) 112051. https://doi.org/10.1016/j.jphotochem.2019.112051.
[35] T. Kawai, T. Sakata, Conversion of carbohydrate into hydrogen fuel by a photocatalytic process, Nature. 286 (1980) 474–476. https://doi.org/10.1038/286474a0.
[36] L. Lan, H. Daly, R. Sung, F. Tuna, N. Skillen, P.K.J. Robertson, C. Hardacre, X. Fan, Mechanistic Study of Glucose Photoreforming over TiO2-Based Catalysts for H2 Production, ACS Catal. 13 (2023) 8574–8587. https://doi.org/10.1021/acscatal.3c00858.
[37] D. Sebastian, A. Pallikkara, H. Bhatt, H.N. Ghosh, K. Ramakrishnan, Unravelling the Surface-State Assisted Ultrafast Charge Transfer Dynamics of Graphene Quantum Dot-Based Nanohybrids via Transient Absorption Spectroscopy, J. Phys. Chem. C. 126 (2022) 11182–11192. https://doi.org/10.1021/acs.jpcc.2c02170.
[38] H. Ribeiro, M.C. Schnitzler, W.M. da Silva, A.P. Santos, Purification of carbon nanotubes produced by the electric arc-discharge method, Surfaces and Interfaces. 26 (2021) 101389. https://doi.org/10.1016/j.surfin.2021.101389.
[39] X. Wang, Y. Feng, P. Dong, J. Huang, A Mini Review on Carbon Quantum Dots: Preparation, Properties, and Electrocatalytic Application, Frontiers in Chemistry. 7 (2019). https://www.frontiersin.org/articles/10.3389/fchem.2019.00671 (accessed December 22, 2023).
[40] S.D. Dsouza, M. Buerkle, P. Brunet, C. Maddi, D.B. Padmanaban, A. Morelli, A.F. Payam, P. Maguire, D. Mariotti, V. Svrcek, The importance of surface states in N-doped carbon quantum dots, Carbon. 183 (2021) 1–11. https://doi.org/10.1016/j.carbon.2021.06.088.
[41] O.E. Semonin, J.M. Luther, M.C. Beard, Quantum dots for next-generation photovoltaics, Materials Today. 15 (2012) 508–515. https://doi.org/10.1016/S1369-7021(12)70220-1.
[42] A. Roberge, J.H. Dunlap, F. Ahmed, A.B. Greytak, Size-Dependent PbS Quantum Dot Surface Chemistry Investigated via Gel Permeation Chromatography, Chem. Mater. 32 (2020) 6588–6594. https://doi.org/10.1021/acs.chemmater.0c02024.
[43] D.R. McMillin, Interatomic Repulsion and the Pauli Principle, J. Chem. Educ. 98 (2021) 2912–2918. https://doi.org/10.1021/acs.jchemed.1c00326.
[44] Y. Wang, P. Yang, L. Zheng, X. Shi, H. Zheng, Carbon nanomaterials with sp2 or/and sp hybridization in energy conversion and storage applications: A review, Energy Storage Materials. 26 (2020) 349–370. https://doi.org/10.1016/j.ensm.2019.11.006.
[45] J. Shi, J. Zhang, Z. Cui, S. Chu, Y. Wang, Z. Zou, In situ growth of MOF-derived sulfur vacancy-rich CdS nanoparticles on 2D polymers for highly efficient photocatalytic hydrogen generation, Dalton Transactions. 51 (2022) 5841–5858. https://doi.org/10.1039/D1DT04188F.
[46] P.M. Gharat, J.M. Chethodil, A.P. Srivastava, P.K. Praseetha, H. Pal, S.D. Choudhury, An insight into the molecular and surface state photoluminescence of carbon dots revealed through solvent-induced modulations in their excitation wavelength dependent emission properties, Photochem Photobiol Sci. 18 (2019) 110–119. https://doi.org/10.1039/c8pp00373d.
[47] J.D. Stachowska, A. Murphy, C. Mellor, D. Fernandes, E.N. Gibbons, M.J. Krysmann, A. Kelarakis, E. Burgaz, J. Moore, S.G. Yeates, A rich gallery of carbon dots based photoluminescent suspensions and powders derived by citric acid/urea, Sci Rep. 11 (2021) 10554. https://doi.org/10.1038/s41598-021-89984-w.
[48] F. Limosani, E.M. Bauer, D. Cecchetti, S. Biagioni, V. Orlando, R. Pizzoferrato, P. Prosposito, M. Carbone, Top-Down N-Doped Carbon Quantum Dots for Multiple Purposes: Heavy Metal Detection and Intracellular Fluorescence, Nanomaterials. 11 (2021) 2249. https://doi.org/10.3390/nano11092249.
[49] A.S. Rasal, S. Yadav, A. Yadav, A.A. Kashale, S.T. Manjunatha, A. Altaee, J.-Y. Chang, Carbon Quantum Dots for Energy Applications: A Review, ACS Appl. Nano Mater. 4 (2021) 6515–6541. https://doi.org/10.1021/acsanm.1c01372.
[50] D. Zhang, D. Chao, C. Yu, Q. Zhu, S. Zhou, L. Tian, L. Zhou, One-Step Green Solvothermal Synthesis of Full-Color Carbon Quantum Dots Based on a Doping Strategy, J. Phys. Chem. Lett. 12 (2021) 8939–8946. https://doi.org/10.1021/acs.jpclett.1c02475.
[51] L. Joseph Desmond, A. N. Phan, P. Gentile, Critical overview on the green synthesis of carbon quantum dots and their application for cancer therapy, Environmental Science: Nano. 8 (2021) 848–862. https://doi.org/10.1039/D1EN00017A.
[52] Efficient Continuous Hydrothermal Flow Synthesis of Carbon Quantum Dots from a Targeted Biomass Precursor for On–Off Metal Ions Nanosensing | ACS Sustainable Chemistry & Engineering, (n.d.). https://pubs.acs.org/doi/full/10.1021/acssuschemeng.0c08594 (accessed December 23, 2023).
[53] M.R. Hasan, N. Saha, T. Quaid, M.T. Reza, Formation of Carbon Quantum Dots via Hydrothermal Carbonization: Investigate the Effect of Precursors, Energies. 14 (2021) 986. https://doi.org/10.3390/en14040986.
[54] C. Michelin, N. Hoffmann, Photosensitization and Photocatalysis—Perspectives in Organic Synthesis, ACS Catal. 8 (2018) 12046–12055. https://doi.org/10.1021/acscatal.8b03050.
[55] F. Ehrat, S. Bhattacharyya, J. Schneider, A. Löf, R. Wyrwich, A.L. Rogach, J.K. Stolarczyk, A.S. Urban, J. Feldmann, Tracking the Source of Carbon Dot Photoluminescence: Aromatic Domains versus Molecular Fluorophores, Nano Lett. 17 (2017) 7710–7716. https://doi.org/10.1021/acs.nanolett.7b03863.
[56] C.J. Reckmeier, J. Schneider, Y. Xiong, J. Häusler, P. Kasák, W. Schnick, A.L. Rogach, Aggregated Molecular Fluorophores in the Ammonothermal Synthesis of Carbon Dots, Chem. Mater. 29 (2017) 10352–10361. https://doi.org/10.1021/acs.chemmater.7b03344.
[57] Organic Photoredox Catalysis | Chemical Reviews, (n.d.). https://pubs.acs.org/doi/full/10.1021/acs.chemrev.6b00057 (accessed December 18, 2023).
[58] Y. Zhang, T.S. Lee, J.L. Petersen, C. Milsmann, A Zirconium Photosensitizer with a Long-Lived Excited State: Mechanistic Insight into Photoinduced Single-Electron Transfer, J. Am. Chem. Soc. 140 (2018) 5934–5947. https://doi.org/10.1021/jacs.8b00742.
[59] V. Strauss, J.T. Margraf, K. Dirian, Z. Syrgiannis, M. Prato, C. Wessendorf, A. Hirsch, T. Clark, D.M. Guldi, Carbon Nanodots: Supramolecular Electron Donor–Acceptor Hybrids Featuring Perylenediimides, Angewandte Chemie International Edition. 54 (2015) 8292–8297. https://doi.org/10.1002/anie.201502482.
[60] F. Arcudi, V. Strauss, L. Đorđević, A. Cadranel, D.M. Guldi, M. Prato, Porphyrin Antennas on Carbon Nanodots: Excited State Energy and Electron Transduction, Angewandte Chemie International Edition. 56 (2017) 12097–12101. https://doi.org/10.1002/anie.201704544.
[61] I. Srivastava, J.S. Khamo, S. Pandit, P. Fathi, X. Huang, A. Cao, R.T. Haasch, S. Nie, K. Zhang, D. Pan, Influence of Electron Acceptor and Electron Donor on the Photophysical Properties of Carbon Dots: A Comparative Investigation at the Bulk-State and Single-Particle Level, Advanced Functional Materials. 29 (2019) 1902466. https://doi.org/10.1002/adfm.201902466.
[62] M. Han, S. Zhu, S. Lu, Y. Song, T. Feng, S. Tao, J. Liu, B. Yang, Recent progress on the photocatalysis of carbon dots: Classification, mechanism and applications, Nano Today. 19 (2018) 201–218. https://doi.org/10.1016/j.nantod.2018.02.008.
[63] A.B. Bourlinos, A. Stassinopoulos, D. Anglos, R. Zboril, M. Karakassides, E.P. Giannelis, Surface Functionalized Carbogenic Quantum Dots, Small. 4 (2008) 455–458. https://doi.org/10.1002/smll.200700578.
[64] A. Tayyebi, O. Akhavan, B.-K. Lee, M. Outokesh, Supercritical water in top-down formation of tunable-sized graphene quantum dots applicable in effective photothermal treatments of tissues, Carbon. 130 (2018) 267–272. https://doi.org/10.1016/j.carbon.2017.12.057.
[65] Y. Dong, R. Wang, G. Li, C. Chen, Y. Chi, G. Chen, Polyamine-Functionalized Carbon Quantum Dots as Fluorescent Probes for Selective and Sensitive Detection of Copper Ions, Anal. Chem. 84 (2012) 6220–6224. https://doi.org/10.1021/ac3012126.
[66] Y. Mao, Y. Bao, D. Han, F. Li, L. Niu, Efficient one-pot synthesis of molecularly imprinted silica nanospheres embedded carbon dots for fluorescent dopamine optosensing, Biosensors and Bioelectronics. 38 (2012) 55–60. https://doi.org/10.1016/j.bios.2012.04.043.
[67] R. Zhang, W. Chen, Nitrogen-doped carbon quantum dots: Facile synthesis and application as a “turn-off” fluorescent probe for detection of Hg2+ ions, Biosensors and Bioelectronics. 55 (2014) 83–90. https://doi.org/10.1016/j.bios.2013.11.074.
[68] Y.-Q. Zhang, D.-K. Ma, Y. Zhuang, X. Zhang, W. Chen, L.-L. Hong, Q.-X. Yan, K. Yu, S.-M. Huang, One-pot synthesis of N-doped carbon dots with tunable luminescence properties, Journal of Materials Chemistry. 22 (2012) 16714–16718. https://doi.org/10.1039/C2JM32973E.
[69] F. Qian, X. Li, L. Tang, S.K. Lai, C. Lu, S.P. Lau, Potassium doping: Tuning the optical properties of graphene quantum dots, AIP Advances. 6 (2016) 075116. https://doi.org/10.1063/1.4959906.
[70] X. Ren, J. Liu, J. Ren, F. Tang, X. Meng, One-pot synthesis of active copper-containing carbon dots with laccase-like activities, Nanoscale. 7 (2015) 19641–19646. https://doi.org/10.1039/C5NR04685H.
[71] Q. Xu, Y. Liu, R. Su, L. Cai, B. Li, Y. Zhang, L. Zhang, Y. Wang, Y. Wang, N. Li, X. Gong, Z. Gu, Y. Chen, Y. Tan, C. Dong, T.S. Sreeprasad, Highly fluorescent Zn-doped carbon dots as Fenton reaction-based bio-sensors: an integrative experimental–theoretical consideration, Nanoscale. 8 (2016) 17919–17927. https://doi.org/10.1039/C6NR05434J.
[72] Y.-J. Yuan, D. Chen, Z.-T. Yu, Z.-G. Zou, Cadmium sulfide-based nanomaterials for photocatalytic hydrogen production, Journal of Materials Chemistry A. 6 (2018) 11606–11630. https://doi.org/10.1039/C8TA00671G.
[73] D. Lang, F. Liu, G. Qiu, X. Feng, Q. Xiang, Synthesis and Visible-Light Photocatalytic Performance of Cadmium Sulfide and Oxide Hexagonal Nanoplates, ChemPlusChem. 79 (2014) 1726–1732. https://doi.org/10.1002/cplu.201402220.
[74] R. Sasikala, A.P. Gaikwad, V. Sudarsan, N. Gupta, S.R. Bharadwaj, Cubic phase indium doped cadmium sulfide dispersed on zinc oxide: Enhanced photocatalytic activity for hydrogen generation from water, Applied Catalysis A: General. 464–465 (2013) 149–155. https://doi.org/10.1016/j.apcata.2013.05.037.
[75] Tailoring cadmium sulfide-based photocatalytic nanomaterials for water decontamination: a review | Environmental Chemistry Letters, (n.d.). https://link.springer.com/article/10.1007/s10311-020-01066-x (accessed December 24, 2023).
[76] J. Kundu, S. Khilari, D. Pradhan, Shape-Dependent Photocatalytic Activity of Hydrothermally Synthesized Cadmium Sulfide Nanostructures, ACS Appl. Mater. Interfaces. 9 (2017) 9669–9680. https://doi.org/10.1021/acsami.6b16456.
[77] S.S. Arbuj, S.R. Bhalerao, S.B. Rane, U.P. Mulik, D.P. Amalnerkar, Solvothermal Synthesis of One Dimensional Copper Doped Cadmium Sulphide Nanorods and Their Photocatalytic Performance, Journal of Nanoengineering and Nanomanufacturing. 3 (2013) 107–113. https://doi.org/10.1166/jnan.2013.1123.
[78] F. Vaquero, R.M. Navarro, J.L.G. Fierro, Influence of the solvent on the structure, morphology and performance for H2 evolution of CdS photocatalysts prepared by solvothermal method, Applied Catalysis B: Environmental. 203 (2017) 753–767. https://doi.org/10.1016/j.apcatb.2016.10.073.
[79] S.K. Apte, S.N. Garaje, G.P. Mane, A. Vinu, S.D. Naik, D.P. Amalnerkar, B.B. Kale, A Facile Template-Free Approach for the Large-Scale Solid-Phase Synthesis of CdS Nanostructures and Their Excellent Photocatalytic Performance, Small. 7 (2011) 957–964. https://doi.org/10.1002/smll.201002130.
[80] H. Yu, W. Zhong, X. Huang, P. Wang, J. Yu, Suspensible Cubic-Phase CdS Nanocrystal Photocatalyst: Facile Synthesis and Highly Efficient H2-Evolution Performance in a Sulfur-Rich System, ACS Sustainable Chem. Eng. 6 (2018) 5513–5523. https://doi.org/10.1021/acssuschemeng.8b00398.
[81] K.C. Wilson, M. Basheer Ahamed, Surface modification of cadmium sulfide thin film honey comb nanostructures: Effect of in situ tin doping using chemical bath deposition, Applied Surface Science. 361 (2016) 277–282. https://doi.org/10.1016/j.apsusc.2015.11.184.
[82] L. Qi, J. Yu, M. Jaroniec, Preparation and enhanced visible-light photocatalytic H2-production activity of CdS-sensitized Pt/TiO2 nanosheets with exposed (001) facets, Phys. Chem. Chem. Phys. 13 (2011) 8915–8923. https://doi.org/10.1039/C1CP20079H.
[83] Quantum confinement in Si and Ge nanostructures: Theory and experiment | Applied Physics Reviews | AIP Publishing, (n.d.). https://pubs.aip.org/aip/apr/article/1/1/011302/123949/Quantum-confinement-in-Si-and-Ge-nanostructures (accessed December 24, 2023).
[84] T. Takagahara, K. Takeda, Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials, Phys. Rev. B. 46 (1992) 15578–15581. https://doi.org/10.1103/PhysRevB.46.15578.
[85] M.S. Hybertsen, Absorption and emission of light in nanoscale silicon structures, Phys. Rev. Lett. 72 (1994) 1514–1517. https://doi.org/10.1103/PhysRevLett.72.1514.
[86] A. Wu, Q. Song, H. Liu, Oxygen atom adsorbed on the sulphur vacancy of monolayer MoS2: A promising method for the passivation of the vacancy defect, Computational and Theoretical Chemistry. 1187 (2020) 112906. https://doi.org/10.1016/j.comptc.2020.112906.
[87] H. Li, C. Tsai, A.L. Koh, L. Cai, A.W. Contryman, A.H. Fragapane, J. Zhao, H.S. Han, H.C. Manoharan, F. Abild-Pedersen, J.K. Nørskov, X. Zheng, Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies, Nature Mater. 15 (2016) 48–53. https://doi.org/10.1038/nmat4465.
[88] K. Sharma, A. Kumar, T. Ahamad, Q.V. Le, P. Raizada, A. Singh, L.H. Nguyen, S. Thakur, V.-H. Nguyen, P. Singh, Sulphur vacancy defects engineered metal sulfides for amended photo(electro)catalytic water splitting: A review, Journal of Materials Science & Technology. 152 (2023) 50–64. https://doi.org/10.1016/j.jmst.2022.11.053.
[89] S.M. Gali, A. Pershin, A. Lherbier, J.-C. Charlier, D. Beljonne, Electronic and Transport Properties in Defective MoS2: Impact of Sulfur Vacancies, J. Phys. Chem. C. 124 (2020) 15076–15084. https://doi.org/10.1021/acs.jpcc.0c04203.
[90] Y. Dong, B. Zeng, J. Xiao, X. Zhang, D. Li, M. Li, J. He, M. Long, Effect of sulphur vacancy and interlayer interaction on the electronic structure and spin splitting of bilayer MoS2, J. Phys.: Condens. Matter. 30 (2018) 125302. https://doi.org/10.1088/1361-648X/aaad3b.
[91] T. Su, C. Men, L. Chen, B. Chu, X. Luo, H. Ji, J. Chen, Z. Qin, Sulfur Vacancy and Ti3C2Tx Cocatalyst Synergistically Boosting Interfacial Charge Transfer in 2D/2D Ti3C2Tx/ZnIn2S4 Heterostructure for Enhanced Photocatalytic Hydrogen Evolution, Advanced Science. 9 (2022) 2103715. https://doi.org/10.1002/advs.202103715.
[92] Vacancy Engineering for Tuning Electron and Phonon Structures of Two‐Dimensional Materials - Liu - 2016 - Advanced Energy Materials - Wiley Online Library, (n.d.). https://onlinelibrary.wiley.com/doi/full/10.1002/aenm.201600436 (accessed December 24, 2023).
[93] S. Lolla, X. Luo, Tuning the catalytic properties of monolayer MoS2 through doping and sulfur vacancies, Applied Surface Science. 507 (2020) 144892. https://doi.org/10.1016/j.apsusc.2019.144892.
[94] D. Le, T.B. Rawal, T.S. Rahman, Single-Layer MoS2 with Sulfur Vacancies: Structure and Catalytic Application, J. Phys. Chem. C. 118 (2014) 5346–5351. https://doi.org/10.1021/jp411256g.
[95] K. Li, M. Han, R. Chen, S.-L. Li, S.-L. Xie, C. Mao, X. Bu, X.-L. Cao, L.-Z. Dong, P. Feng, Y.-Q. Lan, Hexagonal@Cubic CdS Core@Shell Nanorod Photocatalyst for Highly Active Production of H2 with Unprecedented Stability, Advanced Materials. 28 (2016) 8906–8911. https://doi.org/10.1002/adma.201601047.
[96] Z. Ai, G. Zhao, Y. Zhong, Y. Shao, B. Huang, Y. Wu, X. Hao, Phase junction CdS: High efficient and stable photocatalyst for hydrogen generation, Applied Catalysis B: Environmental. 221 (2018) 179–186. https://doi.org/10.1016/j.apcatb.2017.09.002.
[97] Y. Wang, X. Liu, J. Liu, B. Han, X. Hu, F. Yang, Z. Xu, Y. Li, S. Jia, Z. Li, Y. Zhao, Carbon Quantum Dot Implanted Graphite Carbon Nitride Nanotubes: Excellent Charge Separation and Enhanced Photocatalytic Hydrogen Evolution, Angewandte Chemie. 130 (2018) 5867–5873. https://doi.org/10.1002/ange.201802014.
[98] S. Sharma, V. Dutta, P. Singh, P. Raizada, A. Rahmani-Sani, A. Hosseini-Bandegharaei, V.K. Thakur, Carbon quantum dot supported semiconductor photocatalysts for efficient degradation of organic pollutants in water: A review, Journal of Cleaner Production. 228 (2019) 755–769. https://doi.org/10.1016/j.jclepro.2019.04.292.
[99] Y. Lei, C. Yang, J. Hou, F. Wang, S. Min, X. Ma, Z. Jin, J. Xu, G. Lu, K.-W. Huang, Strongly coupled CdS/graphene quantum dots nanohybrids for highly efficient photocatalytic hydrogen evolution: Unraveling the essential roles of graphene quantum dots, Applied Catalysis B: Environmental. 216 (2017) 59–69. https://doi.org/10.1016/j.apcatb.2017.05.063.
[100] J. Guo, M. Guo, D. Jia, X. Song, F. Tong, CdS loaded on coal based activated carbon nanofibers with enhanced photocatalytic property, Chemical Physics Letters. 659 (2016) 66–69. https://doi.org/10.1016/j.cplett.2016.07.001.
[101] A. Sachdev, P. Gopinath, Green synthesis of multifunctional carbon dots from coriander leaves and their potential application as antioxidants, sensors and bioimaging agents, Analyst. 140 (2015) 4260–4269. https://doi.org/10.1039/C5AN00454C.
[102] Y. Pei, R. Pei, X. Liang, Y. Wang, L. Liu, H. Chen, J. Liang, CdS-Nanowires Flexible Photo-detector with Ag-Nanowires Electrode Based on Non-transfer Process, Sci Rep. 6 (2016) 21551. https://doi.org/10.1038/srep21551.
[103] C. Zhu, C. Liu, Y. Zhou, Y. Fu, S. Guo, H. Li, S. Zhao, H. Huang, Y. Liu, Z. Kang, Carbon dots enhance the stability of CdS for visible-light-driven overall water splitting, Applied Catalysis B: Environmental. 216 (2017) 114–121. https://doi.org/10.1016/j.apcatb.2017.05.049.
[104] S.P. Smrithi, N. Kottam, A. Narula, G.M. Madhu, R. Mohammed, R. Agilan, Carbon dots decorated cadmium sulphide heterojunction-nanospheres for the enhanced visible light driven photocatalytic dye degradation and hydrogen generation, Journal of Colloid and Interface Science. 627 (2022) 956–968. https://doi.org/10.1016/j.jcis.2022.07.100.
[105] C. Tang, Y. Zhang, J. Han, Z. Tian, L. Chen, J. Chen, Monitoring graphene oxide’s efficiency for removing Re(VII) and Cr(VI) with fluorescent silica hydrogels, Environmental Pollution. 262 (2020) 114246. https://doi.org/10.1016/j.envpol.2020.114246.
[106] C. Zhu, C. Liu, Y. Fu, J. Gao, H. Huang, Y. Liu, Z. Kang, Construction of CDs/CdS photocatalysts for stable and efficient hydrogen production in water and seawater, Applied Catalysis B: Environmental. 242 (2019) 178–185. https://doi.org/10.1016/j.apcatb.2018.09.096.
[107] M. Kong, Y. Li, X. Chen, T. Tian, P. Fang, F. Zheng, X. Zhao, Tuning the Relative Concentration Ratio of Bulk Defects to Surface Defects in TiO2 Nanocrystals Leads to High Photocatalytic Efficiency, J. Am. Chem. Soc. 133 (2011) 16414–16417. https://doi.org/10.1021/ja207826q.
[108] C. Carrillo-Carrión, S. Cárdenas, B. M. Simonet, M. Valcárcel, Quantum dots luminescence enhancement due to illumination with UV/Vis light, Chemical Communications. 0 (2009) 5214–5226. https://doi.org/10.1039/B904381K.
[109] M. Wang, Z. Wang, B. Zhang, W. Jiang, X. Bao, H. Cheng, Z. Zheng, P. Wang, Y. Liu, M.-H. Whangbo, Y. Li, Y. Dai, B. Huang, Enhancing the Photoelectrochemical Water Oxidation Reaction of BiVO4 Photoanode by Employing Carbon Spheres as Electron Reservoirs, ACS Catal. 10 (2020) 13031–13039. https://doi.org/10.1021/acscatal.0c03671.
[110] D. Gogoi, R. Koyani, A.K. Golder, N.R. Peela, Enhanced photocatalytic hydrogen evolution using green carbon quantum dots modified 1-D CdS nanowires under visible light irradiation, Solar Energy. 208 (2020) 966–977. https://doi.org/10.1016/j.solener.2020.08.061.
[111] R. Roshan, B.K. Nahak, D. Mahata, P. Yadav, S. Panda, S. Patra, S.S. Mahato, A. Tiwari, S. Mahata, Photocatalytic waste-to-renewable energy nexus using solar light induced quantum dots, Energy Conversion and Management. 283 (2023) 116917. https://doi.org/10.1016/j.enconman.2023.116917.
[112] A.-M. Alam, B.-Y. Park, Z. Khan Ghouri, M. Park, H.-Y. Kim, Synthesis of carbon quantum dots from cabbage with down- and up-conversion photoluminescence properties: excellent imaging agent for biomedical applications, Green Chemistry. 17 (2015) 3791–3797. https://doi.org/10.1039/C5GC00686D.
[113] B.K. Nahak, R. Roshan, S.D. Roy, A. Patra, A. Sahu, S. Panda, S. Panda, S.S. Mahato, S. Mahata, Phase transformation driven enhanced photocatalytic activity of capped CeS2-CdS composites, J Mater Sci: Mater Electron. 33 (2022) 15191–15208. https://doi.org/10.1007/s10854-022-08438-9.
[114] K.S. Bhavsar, P.K. Labhane, R.B. Dhake, G.H. Sonawane, Solvothermal synthesis of activated carbon loaded CdS nanoflowers: Boosted photodegradation of dye by adsorption and photocatalysis synergy, Chemical Physics Letters. 744 (2020) 137202. https://doi.org/10.1016/j.cplett.2020.137202.
[115] L. Wu, J.C. Yu, X. Fu, Characterization and photocatalytic mechanism of nanosized CdS coupled TiO2 nanocrystals under visible light irradiation, Journal of Molecular Catalysis A: Chemical. 244 (2006) 25–32. https://doi.org/10.1016/j.molcata.2005.08.047.
[116] A. Veamatahau, B. Jiang, T. Seifert, S. Makuta, K. Latham, M. Kanehara, T. Teranishi, Y. Tachibana, Origin of surface trap states in CdS quantum dots: relationship between size dependent photoluminescence and sulfur vacancy trap states, Physical Chemistry Chemical Physics. 17 (2015) 2850–2858. https://doi.org/10.1039/C4CP04761C.
[117] W. Zou, B. Gao, Y.S. Ok, L. Dong, Integrated adsorption and photocatalytic degradation of volatile organic compounds (VOCs) using carbon-based nanocomposites: A critical review, Chemosphere. 218 (2019) 845–859. https://doi.org/10.1016/j.chemosphere.2018.11.175.
[118] Q. Fan, Y. Huang, C. Zhang, J. Liu, L. Piao, Y. Yu, S. Zuo, B. Li, Superior nanoporous graphitic carbon nitride photocatalyst coupled with CdS quantum dots for photodegradation of RhB, Catalysis Today. 264 (2016) 250–256. https://doi.org/10.1016/j.cattod.2015.08.006.
[119] M. Moniruzzaman, J. Kim, Shape-engineered carbon quantum dots embedded on CdS-nanorods for enhanced visible light harvesting towards photocatalytic application, Applied Surface Science. 552 (2021) 149372. https://doi.org/10.1016/j.apsusc.2021.149372.
[120] I. Velo-Gala, J.J. López-Peñalver, M. Sánchez-Polo, J. Rivera-Utrilla, Role of activated carbon surface chemistry in its photocatalytic activity and the generation of oxidant radicals under UV or solar radiation, Applied Catalysis B: Environmental. 207 (2017) 412–423. https://doi.org/10.1016/j.apcatb.2017.02.028.
[121] K.S. Bhavsar, P.K. Labhane, R.B. Dhake, G.H. Sonawane, Crystal structures, morphological, optical, adsorption, kinetic and photocatalytic degradation studies of activated carbon loaded BiOBr nanoplates prepared by solvothermal method, Inorganic Chemistry Communications. 104 (2019) 134–144. https://doi.org/10.1016/j.inoche.2019.04.002.
[122] H. Ait Ahsaine, M. Ezahri, A. Benlhachemi, B. Bakiz, S. Villain, F. Guinneton, J.-R. Gavarri, Novel Lu-doped Bi2WO6 nanosheets: Synthesis, growth mechanisms and enhanced photocatalytic activity under UV-light irradiation, Ceramics International. 42 (2016) 8552–8558. https://doi.org/10.1016/j.ceramint.2016.02.082.
[123] M. Sachs, R.S. Sprick, D. Pearce, S.A.J. Hillman, A. Monti, A.A.Y. Guilbert, N.J. Brownbill, S. Dimitrov, X. Shi, F. Blanc, M.A. Zwijnenburg, J. Nelson, J.R. Durrant, A.I. Cooper, Understanding structure-activity relationships in linear polymer photocatalysts for hydrogen evolution, Nat Commun. 9 (2018) 4968. https://doi.org/10.1038/s41467-018-07420-6.
[124] W. Shi, F. Guo, M. Li, Y. Shi, Y. Tang, N-doped carbon dots/CdS hybrid photocatalyst that responds to visible/near-infrared light irradiation for enhanced photocatalytic hydrogen production, Separation and Purification Technology. 212 (2019) 142–149. https://doi.org/10.1016/j.seppur.2018.11.028.
[125] N.N. Yunus, F. Hamzah, M.S. So’aib, J. Krishnan, Effect of Catalyst Loading on Photocatalytic Degradation of Phenol by Using N, S Co-doped TiO2, IOP Conf. Ser.: Mater. Sci. Eng. 206 (2017) 012092. https://doi.org/10.1088/1757-899X/206/1/012092.
[126] Y. Tang, X. Hu, C. Liu, Perfect inhibition of CdS photocorrosion by graphene sheltering engineering on TiO 2 nanotube array for highly stable photocatalytic activity, Physical Chemistry Chemical Physics. 16 (2014) 25321–25329. https://doi.org/10.1039/C4CP04057K.
[127] J. Yu, Y. Yu, P. Zhou, W. Xiao, B. Cheng, Morphology-dependent photocatalytic H2-production activity of CdS, Applied Catalysis B: Environmental. 156–157 (2014) 184–191. https://doi.org/10.1016/j.apcatb.2014.03.013.
[128] F. Vaquero, R.M. Navarro, J.L.G. Fierro, Influence of the solvent on the structure, morphology and performance for H2 evolution of CdS photocatalysts prepared by solvothermal method, Applied Catalysis B: Environmental. 203 (2017) 753–767. https://doi.org/10.1016/j.apcatb.2016.10.073.
[129] A. Hernández-Gordillo, S. Oros-Ruiz, R. Gómez, Preparation of efficient cadmium sulfide nanofibers for hydrogen production using ethylenediamine (NH2CH2CH2NH2) as template, Journal of Colloid and Interface Science. 451 (2015) 40–45. https://doi.org/10.1016/j.jcis.2015.03.052.
[130] Y. Liu, Y. Ma, W. Liu, Y. Shang, A. Zhu, P. Tan, X. Xiong, J. Pan, Facet and morphology dependent photocatalytic hydrogen evolution with CdS nanoflowers using a novel mixed solvothermal strategy, Journal of Colloid and Interface Science. 513 (2018) 222–230. https://doi.org/10.1016/j.jcis.2017.11.030.
[131] Y. Liu, Y.-X. Yu, W.-D. Zhang, Carbon quantum dots-doped CdS microspheres with enhanced photocatalytic performance, Journal of Alloys and Compounds. 569 (2013) 102–110. https://doi.org/10.1016/j.jallcom.2013.03.202.
[132] S. Bai, N. Zhang, C. Gao, Y. Xiong, Defect engineering in photocatalytic materials, Nano Energy. 53 (2018) 296–336. https://doi.org/10.1016/j.nanoen.2018.08.058.
[133] P. Garg, S. Kumar, I. Choudhuri, A. Mahata, B. Pathak, Hexagonal Planar CdS Monolayer Sheet for Visible Light Photocatalysis, J. Phys. Chem. C. 120 (2016) 7052–7060. https://doi.org/10.1021/acs.jpcc.6b01622.
[134] R.R. Prabhu, M. Abdul Khadar, Study of optical phonon modes of CdS nanoparticles using Raman spectroscopy, Bull Mater Sci. 31 (2008) 511–515. https://doi.org/10.1007/s12034-008-0080-7.
[135] K. Gong, D.F. Kelley, A.M. Kelley, Resonance Raman Spectroscopy and Electron–Phonon Coupling in Zinc Selenide Quantum Dots, J. Phys. Chem. C. 120 (2016) 29533–29539. https://doi.org/10.1021/acs.jpcc.6b12202.
[136] D. Gogoi, R. Koyani, A.K. Golder, N.R. Peela, Enhanced photocatalytic hydrogen evolution using green carbon quantum dots modified 1-D CdS nanowires under visible light irradiation, Solar Energy. 208 (2020) 966–977. https://doi.org/10.1016/j.solener.2020.08.061.
[137] D. Gogoi, R. Koyani, A.K. Golder, N.R. Peela, Enhanced photocatalytic hydrogen evolution using green carbon quantum dots modified 1-D CdS nanowires under visible light irradiation, Solar Energy. 208 (2020) 966–977. https://doi.org/10.1016/j.solener.2020.08.061.
[138] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure and Applied Chemistry. 87 (2015) 1051–1069. https://doi.org/10.1515/pac-2014-1117.
[139] Template-Free Hydrothermal Synthesis of Novel Three-Dimensional Dendritic CdS Nanoarchitectures | The Journal of Physical Chemistry C, (n.d.). https://pubs.acs.org/doi/full/10.1021/jp810155r (accessed August 21, 2023).
[140] Carbon quantum dots assisted strategy to synthesize Co@NC for boosting photocatalytic hydrogen evolution performance of CdS - ScienceDirect, (n.d.). https://www.sciencedirect.com/science/article/pii/S138589472030423X (accessed November 13, 2023).
[141] J. Guo, Y. Liang, L. Liu, J. Hu, H. Wang, W. An, W. Cui, Core-shell structure of sulphur vacancies-CdS@CuS: Enhanced photocatalytic hydrogen generation activity based on photoinduced interfacial charge transfer, Journal of Colloid and Interface Science. 600 (2021) 138–149. https://doi.org/10.1016/j.jcis.2021.05.013.
[142] Z. Jin, Y. Liu, X. Hao, Self-assembly of zinc cadmium sulfide nanorods into nanoflowers with enhanced photocatalytic hydrogen production activity, Journal of Colloid and Interface Science. 567 (2020) 357–368. https://doi.org/10.1016/j.jcis.2020.02.024.
[143] P. He, L. Zhang, L. Wu, X. Yang, T. Chen, Y. Li, X. Yang, L. Zhu, Q. Meng, T. Duan, Synergistic Effect of the Sulfur Vacancy and Schottky Heterojunction on Photocatalytic Uranium Immobilization: The Thermodynamics and Kinetics, Inorg. Chem. 61 (2022) 2242–2250. https://doi.org/10.1021/acs.inorgchem.1c03552.
[144] B. Chai, M. Xu, J. Yan, Z. Ren, Remarkably enhanced photocatalytic hydrogen evolution over MoS2 nanosheets loaded on uniform CdS nanospheres, Applied Surface Science. 430 (2018) 523–530. https://doi.org/10.1016/j.apsusc.2017.07.292.
[145] K. Sridharan, E. Jang, J.H. Park, J.-H. Kim, J.-H. Lee, T.J. Park, Silver Quantum Cluster (Ag9)-Grafted Graphitic Carbon Nitride Nanosheets for Photocatalytic Hydrogen Generation and Dye Degradation, Chemistry – A European Journal. 21 (2015) 9126–9132. https://doi.org/10.1002/chem.201500163.
[146] X. Hao, Y. Hu, Z. Cui, J. Zhou, Y. Wang, Z. Zou, Self-constructed facet junctions on hexagonal CdS single crystals with high photoactivity and photostability for water splitting, Applied Catalysis B: Environmental. 244 (2019) 694–703. https://doi.org/10.1016/j.apcatb.2018.12.006.
[147] T.S. Natarajan, M. Thomas, K. Natarajan, H.C. Bajaj, R.J. Tayade, Study on UV-LED/TiO2 process for degradation of Rhodamine B dye, Chemical Engineering Journal. 169 (2011) 126–134. https://doi.org/10.1016/j.cej.2011.02.066.
[148] H. Ullah, E. Viglašová, M. Galamboš, Visible Light-Driven Photocatalytic Rhodamine B Degradation Using CdS Nanorods, Processes. 9 (2021) 263. https://doi.org/10.3390/pr9020263.
[149] R.S. Ganesh, E. Durgadevi, M. Navaneethan, S.K. Sharma, H.S. Binitha, S. Ponnusamy, C. Muthamizhchelvan, Y. Hayakawa, Visible light induced photocatalytic degradation of methylene blue and rhodamine B from the catalyst of CdS nanowire, Chemical Physics Letters. 684 (2017) 126–134. https://doi.org/10.1016/j.cplett.2017.06.021.
[150] X. Hu, T. Mohamood, W. Ma, C. Chen, J. Zhao, Oxidative Decomposition of Rhodamine B Dye in the Presence of VO2+ and/or Pt(IV) under Visible Light Irradiation: N-Deethylation, Chromophore Cleavage, and Mineralization, J. Phys. Chem. B. 110 (2006) 26012–26018. https://doi.org/10.1021/jp063588q.
[151] K. Hu, C. Ming, Y. Liu, C. Zheng, S. Zhang, D. Wang, W. Zhao, F. Huang, Introducing sulfur vacancies and in-plane SnS2/SnO2 heterojunction in SnS2 nanosheets to promote photocatalytic activity, Chinese Chemical Letters. 31 (2020) 2809–2813. https://doi.org/10.1016/j.cclet.2020.07.052.