簡易檢索 / 詳目顯示

研究生: 汪哲敏
Wang, Je Min
論文名稱: 摻鉺光纖放大器與光纖拉曼放大器混合系統之最佳化研究
Optimization for Hybrid System of Erbium Doped Fiber Amplifier and Fiber Raman Amplifier
指導教授: 王立康
Wang, Li Karn
口試委員: 王倫
Wang, Lon
劉文豐
Liu, Wen Fung
王立康
Wang, Li Karn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 71
中文關鍵詞: 雷射光纖摻鉺光纖放大器光纖拉曼放大器增益平坦化系統最佳化
外文關鍵詞: laser, optical fiber, Erbium doped fiber amplifier, fiber Raman amplifier, gain flattening, optimization
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文裡我們嘗試製造一個以摻鉺光纖(Erbium doped fiber)放大器和光纖拉曼放大器(Fiber Raman amplifier)混合作為增益介質的光纖放大器系統,以達到增益平坦化(Gain flattening)的效果。並且藉由調整摻鉺光纖的位置與長度,試著讓光訊號的增益最佳化。並且與純粹使用摻鉺光纖放大器以及純粹使用光纖拉曼放大器做比較,這個混合式光纖放大器擁有一些它們所沒有的優點。


    We intend to produce a fiber laser amplifier by constructing a hybrid system of Erbium doped fiber amplifier and fiber Raman amplifier, to obtain the effect of gain flattening. And we try to optimize the gain of the signal laser by adjusting the length and location of Erbium doped fiber. Comparing to those fiber amplifiers which only use Erbium doped fiber or which only use fiber Raman amplifier, this hybrid system has some unique advantages.

    第一章 序論............................................. 1 1.1 研究背景........................................... 1 1.2 研究動機........................................... 3 第二章 實驗元件介紹..................................... 4 2.1 光纖............................................... 4 2.2 摻鉺光纖........................................... 6 2.3 光纖拉曼放大器..................................... 8 2.4 光纖的損耗........................................ 11 2.5 其他被動元件...................................... 13 第三章 實驗架構與過程.................................. 15 3.1 實驗架構.......................................... 15 3.2 實驗過程.......................................... 20 第四章 實驗數據與分析.................................. 26 4.1 混合式光纖放大器的製作............................ 26 4.2 純摻鉺光纖放大器.................................. 47 4.3 Noise Figure 與穩定性............................. 58 第五章 結論............................................ 65 參考文獻............................................... 67

    [1] L. F. Stokes, M. Chodorow, and H. J. Shaw, ”All-single-mode fiber resonator,” Opt. Lett., vol. 7, pp. 2-290, 1982.
    [2] H. R. Stuart, “Dispersive multiplexing in multimode optical fiber,” Science, vol. 289, no. 5477, pp. 281–283, 2000.
    [3] A. W. Snyder, “Coupled mode theory for optical fibers,” J. Opt. Soc. Amer., vol. 62, pp. 1267-1277, 1972.
    [4]圖片摘自https://commons.wikimedia.org/wiki/File:Singlemode_fibre_structure.png
    [5] P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers. New York: Academic, 1999.
    [6] A. A. M. Saleh, R. M. Jopson, J. D. Evankow, and J. Aspell, “Modeling of gain in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett., vol. 2, pp. 714–717, 1990.
    [7] E. Desurvire, J. R. Simpson, and P. C. Becker, “High-gain erbiumdoped travelling-wave amplifier,” Opr. Lett., vol. 12, pp. 888-890, 1987.
    [8] B. Pedersen, A. Bjarklev, J. H. Povlsen, K. Dybdal, and C. Ch. Larsen, “The design of erbium-doped fiber amplifiers,” J. Lightwave Technol., vol. 9, pp. 1105–1112, 1991.
    [9] P. R. Morkel and R. I. Laming, “Theoretical modeling of erbium-doped fiber amplifiers with excited-state absorption,” Opt. Lett., vol. 14, no. 19, pp. 1062–1064, 1989.
    [10]圖片摘自http://spie.org/x33612.xml
    [11] H. Kidorf, K. Rottwitt, M. Nissov, M. Ma, and E. Rabarijaona, “Pump interactions in a 100 nm bandwidth Raman amplifier,” IEEE Photon. Technol. Lett., vol. 11, no. 5, pp. 530–532, 1999.
    [12] A. Mori, H. Masuda, K. Shikano, and M. Shimizu, “Ultra-wide-band tellurite-based fiber Raman amplifier,” J. Lightw. Technol., vol. 21, no. 5, pp. 1300–1306, 2003.
    [13] R. H. Stolen and E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett., vol. 22, pp. 276–278, 1973.
    [14] H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurement in a low loss silicon waveguide,” Appl. Phys. Lett., vol. 85, pp. 2196–2198, 2004.
    [15] W. R. Trutna, Y. K. Park, and R. L. Byer, “The dependence of Raman gain on pump laser bandwidth,” IEEE J. Quantum Electron., vol. 15, no. 7, pp. 648–655, 1979.
    [16] D. J. Dougherty, F. X. Kartner, H. A. Haus, and E. P. Ippen, “Measurement of the Raman gain spectrum of optical fibers,” Opt. Lett., vol. 20, no. 1, p. 31, 1995.
    [17] R. H. Stolen, E. P. Ippen, and A. R. Tynes, “Raman oscillation in glass optical waveguide,” Appl. Phys. Lett., vol. 20, pp. 62- 63, 1972.
    [18]圖片摘自http://bwtek.com/raman-theory-of-raman-scattering/
    [19]圖片摘自http://what-when-how.com/fiber-optics/nonlinear-effects-in-optical-fibers-part-1/
    [20] G. Keiser, Optical Fiber Communications, 3rd ed. New York: McGraw Hill, 2000.
    [21] S. D. Personick, Fiber Optics. New York: Plenum, 1985.
    [22] W. B. Gardner, “Microbending loss in optical fibers,” Bell Syst. Tech. J., pp. 457–465, 1975.
    [23] R. T. Schermer and H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron., vol. 43, no. 10, pp. 899–909, 2007.
    [24]圖片摘自http://www.fel.cvut.cz/education/prace/00001.pdf
    [25] K.-T. Kim, H.-W. Kwon, J.-W. Song, S.-J. Lee, W.-G. Jung, and S.-W. Kang, “Polarizing properties of optical coupler composed of single mode side-polished fiber and multimode metal-clad planar waveguide,” Opt. Commun., vol. 180, pp. 37–42, 2000.
    [26] M. J. F. Digonnet and H. J. Shaw, “Analysis of a tunable single mode optical fiber coupler,” IEEE J. Quantum Electron., vol. 18, no. 4, pp. 746–754, 1982.
    [27]圖片摘自http://www.fiberstore.com/fiber-optic-couplers-and-splitters-tutorial-aid-405.html
    [28] X. Fang and R. O. Claus, “Polarization-independent all-fiber wavelength-division multiplexer based on a sagnac interferometer,” Opt. Lett., vol. 20, no. 20, pp. 2146–2148, 1995.
    [29] C. Brackett, “Dense Wavelength Division Multiplexing Networks: Principles and Applications,” IEEE JSAC, vol. 8, no. 6, pp. 948–64, 1990.
    [30] M. Shirasaki and K. Asama, “Compact optical isolator for fibers using birefringent wedges,” Appl. Opt., vol. 21, no. 23, pp. 4296–4299, 1982.
    [31] J. Fujita, M. Levy, R. M. Osgood, Jr., L. Wilkens, and H. Dotsch, “Waveguide optical isolator based on Mach–Zehnder interferometer,” Appl. Phys. Lett., vol. 76, no. 16, pp. 2158–2160, 2000.
    [32]圖片摘自http://www.intechopen.com/books/advances-in-optical-and-photonic-devices/single-mode-operation-of-1-5-micro-m-waveguide-optical-isolators-based-on-the-nonreciprocal-loss-phe
    [33] H. Masuda and S. Kawai, “Wide-band and gain-flattened hybrid fiber amplifier consisting of an EDFA and a multiwavelength pumped Raman amplifier,” IEEE Photon. Technol. Lett., vol. 11, no. 6, pp. 647–649, 1999.
    [34] S. Singh and R. S. Kaler, “Flat gain L-band Raman-EDFA hybrid optical amplifier for dense wavelength division multiplexed system,” IEEE Photon. Technol. Lett., vol. 25, no. 3, pp. 250–252, 2013.
    [35] A Ahmad, MA Mahdi, M.I. Md Ali and AK. Zamzuri, "Investigation of hybrid gain-clamped Raman-fiber amplifier/ EDFA utilizing pump reuse technique, "Laser Phys. Lett., vol. 5, pp. 202-205, 2008.
    [36]表格摘自https://www.fiberstore24.com/lanotattachments/download/file/id/20/store/1/

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE