簡易檢索 / 詳目顯示

研究生: 王婉稚
Wang, Wan-Jhih
論文名稱: 赭尼客式靜電式相位板之製造及其於相位穿透式電子顯微鏡之應用
The Fabrication of the Zernike Electrostatic Phase Plate and its application on the Phase TEM
指導教授: 陳福榮
Fu-Rong Chen,
開執中
Ji-Jung Kai
曾繁根
Fangan Tseng
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 83
中文關鍵詞: 靜電式相位版赭尼客相位對比生物試片
外文關鍵詞: eletrostatic phase plage, Zernike phase contrast, Biology specimen
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 穿透式電子顯微鏡是分析試片內部結構的強力工具。但對於主要由輕元素,如碳、氮、氧組成的生物樣本或對於半導體中佈植了與基材原子量相近元素的佈植層,其過弱的影像對比使得試片無法被精確分析。
    穿透式電子顯微鏡的影像對比來自於電子束的強度和穿透電子束及繞射電子束的相位差。赭尼客式靜電式相位板是一個在穿透式電子顯微鏡中改變穿透電子束及繞射電子束的相位差的新元件。赭尼客式相位差是增加影像對比最有效率的方法,且不降低解析度。
    赭尼客式靜電式相位板的主體結構是一個五層的環狀結構—三層電極,兩層介電層各夾在每兩層電極中間。中間電極被施加一偏壓,而頂部及底部電極接地。如此一來,在相位板的環狀結構中間的圓柱形成一個靜電場,相當於一個靜電透鏡。當未被繞射的穿透束通過此靜電場,其相位被改變。
    本論文中利微機電技術製造赭尼客式靜電式相位板,以完成微米尺寸等級的相位板設計之製程。及討論利用赭尼客式靜電式相位板所增加相位對比的穿透束電子顯微鏡相位對比影像。


    Abstract
    Transmission Electron Microscopy (TEM) is a powerful tool to analyze the inner structure of the specimen. However, for the biological samples which mainly compose of low atomic number elements such as C, N and O or for the doping layer a the semiconductor which has doped elements of atomic numbers close to the matrix, the contrast of the image is too poor to analyze precisely.
    The contrast of TEM images come from the intensity of the electron beams and the phase difference between the direct and scattered electron wave. The Zernike Electrostatic Phase Plate (ZEPP) is a novel device in TEM altering the phase shift between the direct electron wave and the scattered electron wave to obtain Zernike phase contrast. The Zernike phase contrast is the most effective way to increase the image contrast without loss of resolution.
    The main structure of a ZEPP is a 5-layer ring shape structure—3 layers of electrode and 2 dielectric layers between each electrode. A voltage is applied to the middle electrode and the top and bottom electrodes are grounded. In this way an electrostatic field is constructed in the inner cylinder of the phase plate ring structure and is effective as an electrostatic lens. As the direct electron wave passes through the electrostatic field, its phase is shifted.
    The ZEPP is fabricated by Micro-Electro Mechanical System (MEMs) techniques for it is able to handle the micro-meter scale dimension design of the phase plate.

    Contents Abstract I Acknowledgement II Contents IV List of Figures VI List of Tables IX Chap 1 Introduction …………………………………………….. 1 1.1 Zernike phase plate in the optical microscope ……….. 2 1.2 The phase plate in TEM ……………………………….. 3 1.3 The carbon thin film phase plate ……………………… 3 1.4 The electrostatic phase plate …...……………………… 5 1.4.1 The Boersch zernike electrostatic phase plate .… 6 1.4.2 The other electrostatic phase plates …………….. 7 Chap 2 Theory 2.1 The phase object approximation and weak phase object approximation ……………………………………….. 25 2.2 The imaging of weak phase objects ………………… 29 2.3 The zernike phase contrast ………………………...... 32 2.4 The zernike electrostatic phase plate ……………...... 34 2.5 The optical size of the zernike electrostatic phase plate 37 Chap 3 Experiment ……………………….…………………….. 43 3.1 Zernike electrostatic phase plate fabrication process 43 3.2 Phase contrast transmission electron microscopy … 52 Chap 4 Result and discussion …….……………………………... 66 4.1 The zernike electrostatic phase plate fabrication ........ 66 4.2 The phase contrast TEM image taking ………………. 69 4.3 The absorption contrast of ZEPP …………………….. 70 4.4 The comparison of the first and the second version ZEPP …………………..…………………………….…… 71 4.5 The phase contrast TEM image of first and second version ZEPP .................................................................………….. 72 Chap 5 Conclusion …………………………………………….. 79 Chap 6 Future work …………………………………………… 80 Reference ……………………………………………………….. 81 List of Figure Figure 1.1. The living cells image without and with Zernike phase plate in optical microscope …..…………………. 15 Figure 1.2. Carbon thin film phase plate TEM image and commercial defocus TEM image of horse spleen ferritin ………………………………………..…. 15 Figure 1.3. Design of the carbon thin film phase plate ..…...... 16 Figure 1.4. Three kinds of phase plates proposed by Boersch 16 Figure 1.5. The structure of the electrostatic phase plate ….... 17 Figure 1.6. Potential distribution integrated in the z-axis as a function of the radius of Boersch phase plate ….. 17 Figure 1.7. The first version ZEPP ………………………….. 18 Figure 1.8. PTEM image with ZEPP of an NMOS …………. 18 Figure 1.9. The averaged intensity profiles averaged from 100 profiles across the SiO2/SiONx layers. ………… 19 Figure 1.10. The three supporting axes Boersch phase plate ... 19 Figure 1.11. Conversion of a bright-field sine CTF into a phase contrast CTF of 3 axes Boersch phase plate …... 20 Figure 1.12. Electron diffraction and imaging with three supporting axis Boersch phase plate in diffraction plane. …. 21 Figure 1.13. Schematic of an wire electrostatic phase plate ... 22 Figure 1.14. Interference patterns formed by wire electrostatic phase plate …………………………………………… 22 Figure 1.15. SEM image of two electrode phase-contrast element ………………………………………… 23 Figure 1.16. Demonstration of the increase in the relative phase of the scattered and direct electrons as bias voltage increases. ……………………………………….. 24 Figure 2.1. The 5-layer structure and the cross section of the ZEPP …………………………….……………... 39 Figure 2.2. The cross section of the ZEPP ………………….. 39 Figure 2.3. (a) The exit wave of a 30μm x 30μm object (b) The dimension of ZEPP ……………………………... 41 Figure 2.4. The image of ZEPP whose outer radius is 6.5μm with different inner radius indicated below ………….. 41 Figure 2.5. The image of ZEPP whose outer radius is 7.5μm with different inner radius indicated below ………….. 42 Figure 2.6. The image of ZEPP whose outer radius is 10μm with different inner radius indicated below ………….. 42 Figure 3.1. The bottom electrode of ZEPP …………………. 55 Figure 3.2. The image reversal resist with negative slope ….. 55 Figure 3.3. Lift-off process and step coverage problem ……. 56 Figure 3.4. The shadow effect ………………………………. 57 Figure 3.5. The middle electrode of ZEPP …..……………… 57 Figure 3.6. RIE patterns the PECVD SiNx layer …………… 58 Figure 3.7. The top electrode of ZEPP ……………………… 58 Figure 3.8. KOH back side etching …………………………. 59 Figure 3.9. The KOH anisotropic etching to silicon ………... 59 Figure 3.10. RIE etching through ZEPP ................………….. 60 Figure 3.11. FIB opens the central hole of ZEPP ……………. 60 Figure 3.12. The backward gold top electrode .…..………….. 61 Figure 3.13. The distorted central hole ………………………. 61 Figure 3.14. The projection of ZEPP on the fluorescent screen 62 Figure 3.15. The 3-axes piezoelectric holder ………………... 63 Figure 3.16. The 3-axes piezoelectric holder integrated with electric circuit and the pre-evacuation chamber ………. 64 Figure 3.17. The blueprint and lateral view of 3-axes piezoelectric holder …………………………………………. 65 Figure 4.1. A not perfect PECVD SiNx thin film with cracks or pin holes will lead to shortness ………………………. 74 Figure 4.2. The metal particles lead to crack of the PECVD SiNx thin film ………………………………………….. 74 Figure 4.3. Alignment issue …………………………………. 75 Figure 4.4. The damaged first version ZEPP ………………... 75 Figure 4.5. The top electrode with and without Ta ………….. 76 Figure 4.6. The comparison of first and second version ZEPP .. 76 Figure 4.7. The first version ZEPP 76 Figure 4.8. The second version ZEPP ………………………. 77 Figure 4.9. The NMOS TEM images taken with first version ZEPP ……………………………………………………. 77 Figure 4.10. The PTEM images of gold particles recorded with second version ZEPP ……...…………………. 78 List of Table Table 2.1. The radius in the back focal plane and corresponding killed frequency ………………………………… 40

    Reference

    [1] I. Angert, E. Majorovits, R.R. Schröder, Ultramicroscopy 81(2000) 203.
    [2] F. Zernike, Physica 9(1942) 686-698, 974-986
    [3] D. B. Murphy, R. Oldfield, S. Schwartz, M. W. Davidson, MicroscopyU http://www.microscopyu.com/index.html
    [4] Koichi, I., Hisazo, K., Kazuo, I., and Harou, Y., J. Appl. Phys. 29(1958) 1046.
    [5] P.N.T. Unwin, Ber. Bunsenges. Phys. Chem. 74(1970) 1137.
    [6] Danev, R. And Nagayama, K. J. Phys. Soc. Jpn. 70(2001) 696.
    [7] Danev, R. And Nagayama, K. Ultramicroscopy 88(2001), 243.
    [8] Danov, K., Danev,R., and Nagayama, K. Ultramicroscopy 87(2001), 45.
    [9] Danov, K., Danev,R., and Nagayama, K. Ultramicroscopy 90(2002), 85.
    [10] Nagayama, K. and Danev,R. Japanese patent applied on December 23, 2004. (Tokugan-2004-351902).
    [11] H. Boersch, Z. Naturforsch. A 2A(1947), 615.
    [12] T. Matsumoto and A. Tonomura. Ultramicroscopy 63(1996), 5.
    [13] K. Schultheiß, F. Pérez-Willard, B. Barton, D. Gerthsen and R. R. Schröder, Rev. Sci. Instrum 77( 2006) 033701-1.
    [14] S.H. Huang, W.J. Wang, C.S. Chang, Y.K.Hwu, F.G. Tseng, J.J.Kai and F.R.Chen, J. Electron Microsc. 55(2006), 273.
    [15] P. W. Hawkes and E. Kasper (1996) Principles of Electron Optics. (Academic Press, London.)
    [16] E. Majorovitsa, B. Bartonb, K. Schultheiß, F. Pérez-Willard,D. Gerthsenc, R.R. Schroaderb. Ultramicroscopy107(2007), 213.
    [17] Unwin, P.N.T., Phil. Trans. Roy. Soc. Lond. B261(1971) 95.
    [18] William Krakow and Benjamin M. Siegel. Optik 42(1975)245.
    [19] Rossana Cambie, Kenneth H. Downing, Dieter Typke, Robert M. Glaeser, Jian Jin. Ultramicroscopy 107(2007), 329.
    [20] D. B. Williams and C. B. Carter (1996) Transmission Electron Microscopy. (Plenum Press, New York.)
    [21] P. R. Buseck, J. M. Cowley, and L. Eyring (1992) High-Resolution Transmission Electron Microscopy and Associated Techniques. (Oxford University Press, New York.)
    [22] J. M. Cowley (1995) Diffraction Physics. (North Holland Press, Amsterdam.)
    [23] A. B. El-Kareh (1970) Electron Beams, Lenses, and Optics. (Academic Press, New York and London.)
    [24] Tonomura, A. (1999) Electron holography. (Springer-Verlag Press, New York.)
    [25] F. H. Read, A. Adams and J. R. Soto-Montiel. (1970) Electrostatic cylinder lenses I:Two element lenses. Journal of Physics E. 4, 625-632.
    [26] F. H. Read and A. Adams (1972) Electrostatic cylinder lenses II:Three element einzel lenses. Journal of Physics E. 5, 150-155.
    [27] F. H. Read and A. Adams (1972) Electrostatic cylinder lenses III:Three element asymmetric voltage lenses. Journal of Physics E. 5, 156-160.
    [28] D. W. O. Heddle (1991) Electrostatic Lens Systems. (Adam Hilger Press, Bristol, Philadelphia and New York.)
    [29] P. W. Hawkes and E. Kasper (1996) Principles of Electron Optics. (Academic Press, London.)
    [30] R.F. Egerton, P. Li and M. Malac. Micro 35(2004), 399.
    [31] Ko-Feng Chen, Chia-Seng Chang, Yeukuang Hwu, Wei-Hau Chang, Ji-Jung Kai and Fu-Rong Chen, Study of Mean Absorptive Potential Using Lenz Model: Toward Quantification of Phase Contrast from an Electrostatic Phase plate, unpublished paper.
    [32] The TEM images is taken by S.H. Huang, unpublished data.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE