研究生: |
廖昱淳 Liao, Yu-Chun |
---|---|
論文名稱: |
聯胺處理對單壁奈米碳管網絡薄膜物化特性影響之研究 Effect of Hydrazine Treatment on Physicochemical Characteristics of Single-Walled Carbon Nanotube Networks |
指導教授: |
王本誠
Wang, Pen-Cheng 許瑤真 Hsu, Yao-Jane |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 先進光源科技學位學程 Degree Program of Science and Technology of Synchrotron Light Source |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 99 |
中文關鍵詞: | 單壁奈米碳管 、聯胺 、拉曼光譜儀 、X光光電子能譜儀 |
外文關鍵詞: | single-walled carbon nanotube, hydrazine, Raman Spectroscopy, X-ray Photoemission Spectroscopy |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究中藉由熱裂解化學氣相沉積法的方式,以酒精蒸氣作為碳源,利用雙層觸媒系統以便成長出網絡狀單壁奈米碳管薄膜(SWCNT-networks),並利用濕式蝕刻的方式將高透明度及高導電度的單壁奈米碳管網絡狀薄膜移除下來,並轉移到其他基材上以便繼續對它做還原與氧化的化學修飾(chemical modification)處理。
化學修飾處理主要著重於單壁奈米碳管薄膜經還原劑(聯胺)處理後,實驗結果發現,聯胺處理後碳管表面鍵結了許多NH2,此舉會引起單壁奈米碳管薄膜自發性的摻雜(doping)效應,進而導致單壁奈米碳管薄膜導電特性之改變,其改變機制將利用四點探針(Four-point Probe)、場發射電子顯微鏡(Field Emission Scanning Electron Microscope, FESEM)、拉曼光譜儀(Raman Spectroscopy)、X光光電子能譜儀(X-ray Photoemission Spectroscopy, XPS)、及紫外光光電電子能譜(Ultra-violet Photoelectron Spectroscopy, UPS)的量測,研究當單壁奈米碳管網絡狀薄膜在經還原與氧化處理後,對於其導電特性、整體結構、碳管表面化學鍵結結構以及價帶電子結構的改變行為做一整合性之探討。
文中亦將還原劑處理與一般常見之氧化劑(硫酸)處理後之碳管表面特性做一詳細之比較,並探討已氧化之單壁奈米碳管薄膜經再次聯胺處理後所引起之還原效應。
In this study, a simple thermal pyrolysis chemical vapor deposition technique which was used alcohol vapor as the carbon source was synthesized high purity single-walled carbon nanotube on silicon substrate by double-layered catalytic system, and this sample was used a lift-off technique with BOE solution subsequently. After those processes, the SWCNT-networks successfully were separated from the silicon substrate. The lifted-off SWCNT-networks which has excellent optical and electrical properties was transferred the suspended SWCNT-networks to various substrates, and proceeded with chemical modification of reduction and oxidation treatment.
Chemical modification focused primarily on the reducing agent (hydrazine) treatment in SWCNT-networks. As the results of this experiment showed, the surface of SWCNT-networks which were treated by hydrazine has bonded to their sidewalls using amino groups. This situation was induced a spontaneous charge transfer that was led to the doping effect, and the change of SWCNT-networks’ conductivity. The phenomenon of charge transfer was analyzed by the four-point probe systems, field emission scanning electron microscope, Raman spectroscopy, X-ray Photoemission spectroscopy, and Ultra-violet Photoelectron spectroscopy. Though those analyses was investigated the pristine and reacted SWCNT-networks properties of conductive characteristics, the sidewall structure, chemical bonding species and valence bond electronic structure. Those overall results provide a comprehensive exploration.
This paper was also compared the characteristics of hydrazine treatment with acid treatment. We have proposed the reduction effect by hydrazine treated pre-oxidized SWCNT-networks.
1. Iijima, S., “HELICAL MICROTUBULES OF GRAPHITIC CARBON”, Nature, 354, 6348, 56-58, IIJIMA, S, NEC CORP LTD,FUNDAMENTAL RES LABS,34 MIYUKIGAOKA,TSUKUBA,IBARAKI 305,JAPAN., 1991.
2. Wang, X., et al., “Fabrication of Ultralong and Electrically Uniform Single-Walled Carbon Nanotubes on Clean Substrates”, Nano Letters, 9, 9, 3137-3141, 2009.
3. Klinke, C., et al., “Charge Transfer Induced Polarity Switching in Carbon Nanotube Transistors”, Nano Letters, 5, 3, 555-558, 2005.
4. Gojny, F.H., et al., “Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites”, Polymer, 47, 6, 2036-2045, 2006.
5. Han, L., et al., “A Direct Route toward Assembly of Nanoparticle−Carbon Nanotube Composite Materials”, Langmuir, 20, 14, 6019-6025, 2004.
6. MinFeng, Y. and et al., “Three-dimensional manipulation of carbon nanotubes under a scanning electron microscope”, Nanotechnology, 10, 3, 244, 1999.
7. Gruner, G., “Carbon nanotube films for transparent and plastic electronics”, Journal of Materials Chemistry, 16, 35, 3533-3539, Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA.Gruner, G, Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA.ggruner@ucla.edu, 2006.
8. Wu, Z., et al., “Transparent, Conductive Carbon Nanotube Films”, Science, 305, 5688, 1273-1276, 2004.
9. Hatton, R.A., A.J. Miller, and S.R.P. Silva, “Carbon nanotubes: a multi-functional material for organic optoelectronics”, Journal of Materials Chemistry, 18, 11, 1183-1192, 2008.
10. Landi, B.J., et al., “Single-wall carbon nanotube-polymer solar cells”, Progress in Photovoltaics: Research and Applications, 13, 2, 165-172, NanoPower Research Laboratories, Rochester Institute of Technology, Rochester, NY 14623, USA; Ohio Aerospace Institute, Brookpark, OH 44142, USA; NASA Glenn Research Center, Cleveland, OH 44135, USA, 2005.
11. Hirsch, A., “Functionalization of Single-Walled Carbon Nanotubes”, Angewandte Chemie International Edition, 41, 11, 1853-1859, Institut für Organische Chemie der Universität Erlangen-Nürnberg Henkestrasse 42, 91054 Erlangen (Germany) Fax: (+49) 9131-852-68-64, 2002.
12. Léonard, F. and J. Tersoff, “Novel Length Scales in Nanotube Devices”, Physical Review Letters, 83, 24, 5174, 1999.
13. Salvetat, J.P., et al., Physical properties of carbon nanotubes, in Electronic Properties of Novel Materials - Progress in Molecular Nanostructures - Xii International Winterschool, H. Kuzmany, et al., Editors. 1998, Amer Inst Physics: Melville. p. 467-480.
14. Rodriguez, N.M., “A REVIEW OF CATALYTICALLY GROWN CARBON NANOFIBERS”, Journal of Materials Research, 8, 12, 3233-3250, RODRIGUEZ, NM, PENN STATE UNIV,MAT RES LAB,UNIV PK,PA 16802., 1993.
15. RinakuMechatronicsCo., L.,
16. Guo, T., et al., “CATALYTIC GROWTH OF SINGLE-WALLED NANOTUBES BY LASER VAPORIZATION”, Chemical Physics Letters, 243, 1-2, 49-54, RICE UNIV,DEPT CHEM,HOUSTON,TX 77251. RICE UNIV,DEPT PHYS,HOUSTON,TX 77251.GUO, T, RICE UNIV,RICE QUANTUM INST,CTR NANOSCALE SCI & TECHNOL,MS 100,POB 1892,HOUSTON,TX 77251., 1995.
17. ChalmersUniversity, “ Dept. of Physics and Engineering Physics”, http://www.nephy.chalmers.se/,
18. Dresselhaus, M.S., et al., “Raman spectroscopy of carbon nanotubes”, Physics Reports-Review Section of Physics Letters, 409, 2, 47-99, MIT, Dept Phys, Cambridge, MA 02139 USA. MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA. Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan. JST, CREST, Sendai, Miyagi 9808578, Japan. Univ Fed Minas Gerais, Dept Fis, BR-30123970 Belo Horizonte, MG, Brazil.Dresselhaus, MS, MIT, Dept Phys, Room 13-3005, Cambridge, MA 02139 USA.millie@mgm.mit.edu, 2005.
19. Dresselhaus, M.S., G. Dresselhaus, and A. Jorio, “Raman Spectroscopy of Carbon Nanotubes in 1997 and 2007†”, The Journal of Physical Chemistry C, 111, 48, 17887-17893, 2007.
20. Ago, H., et al., “Work Functions and Surface Functional Groups of Multiwall Carbon Nanotubes”, The Journal of Physical Chemistry B, 103, 38, 8116-8121, 1999.
21. Graupner, R., et al., “Doping of single-walled carbon nanotube bundles by Bronsted acids”, Physical Chemistry Chemical Physics, 5, 24, 5472-5476, 2003.
22. Geng, H.-Z., et al., “Effect of Acid Treatment on Carbon Nanotube-Based Flexible Transparent Conducting Films”, Journal of the American Chemical Society, 129, 25, 7758-7759, 2007.
23. Tantang, H., et al., “Using oxidation to increase the electrical conductivity of carbon nanotube electrodes”, Carbon, 47, 7, 1867-1870, 2009.
24. Su, C.-Y., et al., “Chemically-treated single-walled carbon nanotubes as digitated penetrating electrodes in organic solar cells”, Journal of Materials Chemistry, 2010.
25. http://www.nsrrc.org.tw/,
26. 汪建民, “材料分析”, 中國材料科學學會, 325,370, 1998.
27. Vickerman, J.C., “Surface Analysis-The Principal Techniques”, John Wiley and Sons, New York, 1997.
28. G. Ertl, J.K., “Low Energy Electrons and Surface Chemistry”, Weinheim 1985.
29. Ishii, H., et al., “Energy Level Alignment and Interfacial Electronic Structures at Organic/Metal and Organic/Organic Interfaces”, Advanced Materials, 11, 605, 1999.
30. Ishii, H., et al., “Energy Level Alignment and Interfacial Electronic Structures at Organic/Metal and Organic/Organic Interfaces”, Advanced Materials, 11, 8, 605-625, Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8602 (Japan); Venture Business Laboratory, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8602 (Japan); Research Center for Materials Science and Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8602 (Japan); Tsukuba Research Center, Mitsubishi Chemical Corporation, Ami, Inashiki, Ibaraki 300-0332 (Japan), 1999.
31. 張俊彥、施敏, “半導體元件物理與製作技術”, 高立, 40, 1996.
32. Su, C.-Y., et al., “Scalable and Surfactant-Free Process for Single-Walled Carbon Nanotube Based Transparent Conductive Thin Films via Layer-by-Layer Assembly”, The Journal of Physical Chemistry C, 2010.
33. 成會明, “奈米碳管”, 五南, 197, 2004.
34. 韋進全、張先峰、王昆林, “奈米碳管巨觀體”, 五南, 158, 2009.
35. Saito, R., G. Dresselhaus, and M.S. Dresselhaus, “Trigonal warping effect of carbon nanotubes”, Physical Review B, 61, 4, 2981, 2000.
36. Jorio, A., et al., “Structural ( n, m) Determination of Isolated Single-Wall Carbon Nanotubes by Resonant Raman Scattering”, Physical Review Letters, 86, 6, 1118, 2001.
37. McPhail, M.R., et al., “Charging Nanowalls: Adjusting the Carbon Nanotube Isoelectric Point via Surface Functionalization”, The Journal of Physical Chemistry C, 2009.
38. Kataura, H., et al., “Optical properties of single-wall carbon nanotubes”, Synthetic Metals, 103, 1-3, 2555-2558, 1999.
39. Pirlot, C., et al., “Preparation and Characterization of Carbon Nanotube/Polyacrylonitrile Composites”, Advanced Engineering Materials, 4, 3, 109-114, Laboratoire de Résonance Magnétique Nucléaire (RMN), Facultés Universitaires Notre Dame de la Paix, 61, Rue de Bruxelles, B-5000 Namur (Belgium); Laboratoire Interdisciplinaire de Spectroscopie Electronique (LISE), Facultés Universitaires Notre Dame de la Paix, 61, Rue de Bruxelles, B-5000 Namur (Belgium), 2002.
40. Yang, D.-Q. and E. Sacher, “Carbon 1s X-ray Photoemission Line Shape Analysis of Highly Oriented Pyrolytic Graphite: The Influence of Structural Damage on Peak Asymmetry”, Langmuir, 22, 3, 860-862, 2005.
41. Cahill, P.A. and C.M. Rohlfing, “Theoretical studies of derivatized buckyballs and buckytubes”, Tetrahedron, 52, 14, 5247-5256, 1996.
42. 韋進全、張先峰、王昆林, “奈米碳管巨觀體”, 五南, 157, 2009.
43. Maldonado, S., S. Morin, and K.J. Stevenson, “Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping”, Carbon, 44, 8, 1429-1437, 2006.
44. Vieira, R., et al., “New carbon nanofiber/graphite felt composite for use as a catalyst support for hydrazine catalytic decomposition”, Chemical Communications, 9, 954-955, 2002.
45. Yang, D., et al., “Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy”, Carbon, 47, 1, 145-152, 2009.
46. Oku, M., H. Matsuta, and K. Wagatsuma, “Chemical change of nitrosylpentacyanoferrate(II) during XPS measurements: Identification of the irradiated product by DV-X alpha molecular orbital calculations”, Journal of the Chemical Society-Faraday Transactions, 93, 6, 1061-1063, 1997.
47. Mukherjee, A., et al., “Attachment of Nitrogen and Oxygen Centered Radicals to Single-Walled Carbon Nanotube Salts”, Chemistry of Materials, 20, 23, 7339-7343, 2008.
48. Kusunoki, I., et al., “Nitridation of a diamond film using 300-700 eV N-2(+) ion beams”, Diamond and Related Materials, 9, 3-6, 698-702, 2000.
49. Simmons, J.M., et al., “Effect of Ozone Oxidation on Single-Walled Carbon Nanotubes”, The Journal of Physical Chemistry B, 110, 14, 7113-7118, 2006.
50. Zhou, W., et al., “Charge transfer and Fermi level shift in p-doped single-walled carbon nanotubes”, Physical Review B, 71, 20, 2005.