研究生: |
侯中權 Hou, Chung-Chuan |
---|---|
論文名稱: |
輔助式前端轉換器之研究 Research of Auxiliary Front-end Converters |
指導教授: |
鄭博泰
Cheng, Po-Tai |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 113 |
中文關鍵詞: | 主動濾波器 、主動前端轉換器 、輔助轉換器 |
外文關鍵詞: | active filter, active front-end converter, auxiliary converter |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在可變速度驅動系統中,通常使用二極體整流器或閘流體整流器當作交流電轉換成直流電的前端裝置。傳統整流器的優點包含成本低廉、裝置簡單及高可靠度。然而傳統整流器產生嚴重的諧波電流於市電並且欠缺回生能量的能力。工業標準IEEE-519和IEC-61000-3-2針對這些問題進行規範。
近年來,工業界廣泛使用絕緣閘雙極性電晶體開關架構的主動前端轉換器,該轉換器的優點包含雙向電力潮流、單位功因、線電流低諧波失真及小濾波器尺寸。因此本文針對主動前端轉換器使用同步參考座標框為基礎的模型,並且詳細討論如何設計控制器來提升干擾阻絕能力和系統的強健性。
當達成高功因操作和回生能量能力的同時,採用主動前端轉換器的成本較二極體整流器前端裝置昂貴許多。因此,本文提出輔助轉換器裝置安裝於二極體整流器前端系統。輔助轉換器和二極體整流器於交流側直接並聯操作,而在直流側則透過兩個二極體彼此相接。輔助轉換器如同並聯式主動濾波器一般,可以補償二極體整流器所產生的諧波電流,而且提供回生能源的能力。輔助轉換器可以達成主動前端轉換器的功能,但是只需要主動前端轉換器0.3-0.5標么的轉換器額定。本文並且利用模擬和實驗結果來驗證主動前端轉換器和輔助轉換器的性能如同理論推導。
關鍵詞:主動濾波器、主動前端轉換器、輔助轉換器
In variable speed drive systems, diode rectifiers or thyristor rectifiers are usually used as the AC/DC front-end. The advantages of the conventional rectifier include low cost, simplicity, and high reliability. However, these rectifiers draw significant harmonic current from the utility grid and lack regeneration capability. Industry standards, such as IEEE-519 and IEC-61000-3-2, are adopted to address these issues.
Recently, Insulated Gate Bipolar Transistor based active front-end (AFE) converter systems are widely utilized by industries thanks to the advantages of bi-directional power flow, unity power factor, low harmonic distortion of the line current and small filter size. This dissertation presents a synchronous reference frame based model for AFE converter and discusses in detail how the control design affects the disturbance rejection capability and robustness.
While achieving high-power factor operation and regeneration capability, however, AFE converters cost much more than diode rectifier front-ends. Therefore this dissertation proposes an auxiliary converter (AXC) for the diode rectifier front-end system. The AXC and diode rectifier are connected in parallel on the AC side. Both are also connected on the DC side via diodes. The AXC system operates as a shunt active filter to compensate for current harmonics of the diode rectifier, and provides regeneration capability. Thus it can accomplish the functionalities of an AFE converter, but with only 0.3-0.5 pu of converter rating. The simulation results and experimental results are used to validate the performance of the AFE and AXC converter system.
Keywords: active filter, active front-end converter, auxiliary converter
[1] D. B. Vannoy, M. F. Mcgranaghan, S. M. Halpin, W. A. Moncrief, and D. D. Sabin, “Roadmap for power-quality standards development,” IEEE Trans. Ind. Applicat., vol. 43, no. 2, pp. 412-421, Mar./Apr. 2007.
[2] H. Akagi, Y. Kanagawa, and A. Nabae, “Instantaneous reactive power compensator comprising switching devices without energy storage components,” IEEE Trans. Ind. Applicat., vol. IA-20, May/Jun. 1984.
[3] H. Akagi, “New trends in active filters for power conditioning,” IEEE Trans. Ind. Applicat., vol. 32, no. 6, pp. 1312-1322, Nov./Dec. 1996.
[4] P. Jintakosonwit, H. Fujita, and H. Akagi, “Control and performance of a fully-digital-controlled shunt active filter for installation on a power distribution system,” IEEE Trans. Power Electron., vol. 17, no. 1, pp. 132-140, Jan. 2002.
[5] P. Jintakosonwit, H. Fujita, H. Akagi, and S. Ogasawara, “Implementation and performance of cooperative control of shunt active filters for harmonic damping throughout a power distribution system,” IEEE Trans. Ind. Applicat., vol. 39, no. 2, pp. 556-564, Mar./Apr. 2003.
[6] H. Akagi, “Active harmonic filters,” Proc. IEEE, vol. 93, no. 12, pp. 2128-2141, Dec. 2005.
[7] W. Tangtheerajaroonwong, T. Hatada, K. Wada, and H. Akagi, “Design and performance of a transformerless shunt hybrid filter integrated into a three-phase diode rectifier,” IEEE Trans. Power Electron., vol. 22, no. 5, pp. 1882-1889, Sep. 2007.
[8] H. Akagi and T. Hatada, “Voltage balancing control for a three-level diode-clamped converter in a medium-voltage transformerless hybrid active filter,” IEEE Trans. Power Electron., vol. 24, no. 3, pp. 571-579, Mar. 2009.
[9] E. H. Watanabe, R. M. Stephan, and M. Aredes, “New concepts of instantaneous active and reactive powers in electrical systems with generic loads,” IEEE Trans. Power Delivery, vol. 8, no. 2, pp. 697-703, Apr. 1993.
[10] S. Bhattacharya, D. Divan, and B. Banerjee, “Synchronous frame harmonic isolator using active series filter,” in the 4th European Conference on Power Electronics and Applications, 1991, pp. 30-35.
[11] S. Bhattacharya, P.-T. Cheng, and D. Divan, “Hybrid solutions for improving passive filter performance in high power applications,” IEEE Trans. Ind. Applicat., vol. 33, no. 3, pp. 732-747, May/Jun. 1997.
[12] S. Bhattacharya, T. M. Frank, D. Divan, and B. Banerjee, “Active filter system implementation,” IEEE Ind. Appl. Mag., pp. 47-63, Sep./Oct. 1998.
[13] P.-T. Cheng, S. Bhattacharya, and D. Divan, “Experimental verification of dominant harmonic active filter for high power applications,” IEEE Trans. Ind. Applicat., vol. 36, no. 2, pp. 567-577, Mar./Apr. 2000.
[14] C. Lascu, L. Asiminoaei, I. Boldea, and F. Blaabjerg, “High performance current controller for selective harmonic compensation in active power filters,” IEEE Trans. Power Electron., vol. 22, no. 5, pp. 1826-1835, Sep. 2007.
[15] L. Asiminoaei, C. Lascu, F. Blaabjerg, and I. Boldea, “Performance improvement of shunt active power filter with dual parallel topology,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 247-259, Jan. 2007.
[16] L. Asiminoaei, E. Aeloiza, P. N. Enjeti, and F. Blaabjerg, “Shunt active-power-filter topology based on parallel interleaved inverters,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1175-1189, Mar. 2008.
[17] M. J. Newman, D. N. Zmood, and D. G. Holmes, “Stationary frame harmonic reference generation for active filter systems,” IEEE Trans. Ind. Applicat., vol. 38, no. 6, pp. 1591-1599, Nov./Dec. 2002.
[18] F. Z. Peng, “Application issues of active power filters,” IEEE Ind. Appl. Mag., pp. 21-30, Sep./Oct. 1998.
[19] F. Z. Peng, “Harmonic sources and filtering approaches,” IEEE Ind. Appl. Mag., pp. 18-25, Jul./Aug. 2001.
[20] M. Routimo, M. Salo, and H. Tussa, “Comparison of voltage-source and current-source shunt active power filters,” IEEE Trans. Power Electron., vol. 22, no. 2, pp. 636-643, Mar. 2007.
[21] V. Kaura and V. Blasko, “Operation of a phase locked loop system under distorted utility conditions,” IEEE Trans. Ind. Applicat., vol. 33, no. 1, pp. 58-63, Jan./Feb. 1997.
[22] P. Rodriguez, J. Pou, J. Bergas, J. I. Candela, R. P. Burgos, and D. Boroyevich, “Decoupled double synchronous reference frame PLL for power converters control,” IEEE Trans. Power Electron., vol. 22, no. 2, pp. 584-592, Mar. 2007.
[23] S.-K. Chung, “A phase Tracking system for three phase utility interface inverters,” IEEE Trans. Power Electron., vol. 15, no. 3, pp. 431-438, May 2000.
[24] L. G. B. Rolim, J. D. R. da Costa, and M. Aredes, “Analysis and software implementation of a robust synchronizing PLL circuit based on the PQ theory,” IEEE Trans. Ind. Electron., vol. 53, no. 6, pp. 1919-1926, Dec. 2006.
[25] T. G. Habetler, “A space vector-based rectifier regulator for ac/dc/ac converters,” IEEE Trans. Power Electron., vol. 8, no. 1, pp. 30-36, Jan. 1993.
[26] T. G. Habetler and R. G. Harley, “Power electronic converter and system control,” Proc. IEEE, vol. 89, no. 6, pp. 913-925, June 2001.
[27] M. P. Kazmierkowski and L. Malesani, “Current control techniques for three-phase voltage-source PWM converters: A survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, Oct. 1998.
[28] I. G. Park and S. I. Kim, “A thyristor phase-controlled voltage-source converter with bidirectional power flow capability,” IEEE Trans. Ind. Applicat., vol. 34, no. 5, pp. 1147-1155, Sep./Oct. 1998.
[29] M. Yano, M. Matsui, T.-H. Chin, K. Kuroki, and T. Shimizu, “Recent trends in power conversions,” in IEEE Industrial Electronics Conference 26th IECON Annual Meeting, 2000, pp. 1340-1346.
[30] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of single-phase improved power quality ac-dc converters,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 962-981, Oct. 2003
[31] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of three-phase improved power quality ac-dc converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 640-660, June 2004
[32] J. R. Rodriguez, J. W. Dixon, J. R. Espinoza, J. Pontt, and P. Lezana, “PWM regenerative rectifiers: State of the art,” IEEE Trans. Ind. Electron., vol. 52, no. 1, pp. 5-22, Feb. 2005.
[33] T. M. Jahns and V. Blasko, “Recent advances in power electronics technology for industrial and traction machine drives,” Proc. IEEE, vol. 89, no. 6, pp. 963-975, June 2001.
[34] H. Mao, F. C. Y. Lee, D. Boroyevich, and S. Hiti, “Review of high-performance three-phase power-factor correction circuits,” IEEE Trans. Ind. Electron., vol. 44, no. 4, pp. 437-446, Aug. 1997.
[35] Y. Sato, T. Ishizuka, K. Nezu, and T. Kataoka, “A new control strategy for voltage-type PWM rectifiers to realize zero steady-state control error in input current,” IEEE Trans. Ind. Applicat., vol. 34, no. 3, pp. 480-486, May/June 1998.
[36] D.-W. Chung and S.-K. Sul, “Minimum-loss strategy for three-phase PWM rectifier,” IEEE Trans. ind. Electron., vol. 46, no. 3, pp. 517-526, June 1999.
[37] I. Agirman and V. Blasko, “A novel control method of a VSC without ac line voltage sensors,” IEEE Trans. Ind. Applicat., vol. 39, no. 2, pp. 519-524, Mar./Apr. 2003.
[38] M. Liserre, F. Blaabjerg, and S. Hansen, “Design and control of an LCL-filter-based three-phase active rectifier,” IEEE Trans. Ind. Applicat., vol. 41, no. 5, pp. 1281-1291, Sep./Oct. 2005.
[39] M. Cichowlas, M. Malinowski, M. P. Kazmierkowski, D. L. Sobczuk, P. Rodriguez, and J. Pou, “Active filtering function of three-phase PWM boost rectifier under different line voltage conditions,” IEEE Trans. Ind. Electron., vol. 52, no. 2, pp. 410-419, Apr. 2005.
[40] Y. Suh and T. A. Lipo, “A control scheme in hybrid synchronous-stationary frame for PWM ac/dc converter under generalized unbalanced operating conditions,” in IEEE Industry Applications Conference 39th IAS Annual Meeting, 2004, pp. 2244-2251.
[41] Y. Suh and T. A. Lipo, “Control scheme in hybrid synchronous station frame for PWM ac/dc converter under generalized unbalanced operating conditions,” IEEE Trans. Ind. Applicat., vol. 42, no. 3, pp. 825-835, May/Jun. 2006.
[42] Y. Suh and T. A. Lipo, “Modeling and analysis of instantaneous active and reactive power for PWM ac/dc converter under generalized unbalanced network,” IEEE Trans. Power Delivery, vol. 21, no. 3, pp. 1530-1540, July 2006.
[43] H.-S. Song and K. Nam, “Dual current control scheme for PWM converter under unbalanced input voltage conditions,” IEEE Trans. Ind. Electron., vol. 46, no. 5, pp. 953-959, Oct. 1999.
[44] V. Blasko, “A novel method for selective harmonic elimination in power electronic equipment,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 223-228, Jan. 2007.
[45] R. Wu, S. B. Dewan and G. R. Slemon, “A PWM ac-to-dc converter with fixed switching frequency,” IEEE Trans. Ind. Applicat., vol. 26, no. 5, pp. 880-885, Sep./Oct. 1990.
[46] R. Wu, S. B. Dewan and G. R. Slemon, “Analysis of a PWM ac to dc voltage source converter under the predicted current control with a fixed switching frequency,” IEEE Trans. Ind. Applicat., vol. 27, no. 4, pp. 756-764, Jul./Aug. 1991.
[47] S. Hiti and D. Boroyevich, “Control of front-end three-phase boost rectifier,” in IEEE 9th Annual Applied Power Electronics Conference, 1994, pp. 927-933.
[48] V. Blasko and V. Kaura, “A novel control to actively damp resonance in input LC filter of a three-phase voltage source converter,” IEEE Trans. Ind. Applicat., vol. 33, no. 2, pp. 519-524, Mar./Apr. 1997.
[49] V. Blasko and V. Kaura, “A new mathematical model and control of a three-phase AC-DC voltage source converter,” IEEE Trans. Power Electron., vol. 12, no. 1, pp. 116-123, Jan. 1997.
[50] V. Kaura and V. Blasko, “Operation of a voltage source converter at increased utility voltage,” IEEE Trans. Power Electron., vol. 12, no. 1, pp. 132-137, Jan. 1997.
[51] V. Blasko and I. Agirman, “Modeling and control of three-phase regenerative ac-dc converters,” in Decision and Control, Proceedings of the 40th IEEE Conference, 2001, pp. 2235-2240.
[52] B. Shi, G. Venkataramanan, and N. Sharma, “Design considerations for reactive elements and control parameters for three phase boost rectifiers,” in Electric Machines and Drives, 2005 IEEE International Conference, 2005, pp. 1757-1764.
[53] R. P. Burgos, E. P. Wiechmann, and J. Holtz, “Complex state-space modeling and nonlinear control of active front-end converters,” IEEE Trans. Ind. Electron., vol. 52, no. 2, pp. 363-377, Apr. 2005.
[54] K. Tungpimolrut, M. Matsui, and T. Fukao, “A simple limit cycle suppression scheme for hysteresis current controlled PWM VSI with consideration of switching delay time,” in IEEE Industry Applications Conference 27th IAS Annual Meeting, 1992, pp. 1034-1041.
[55] D. N. Zmood, D. G. Holmes, and G. H. Bode, “Frequency-domain analysis of three-phase linear current regulators,” IEEE Trans. Ind. Applicat., vol. 37, no. 2, pp. 601-610, Mar./Apr. 2001.
[56] D. N. Zmood and D. G. Holmes, “Stationary frame current regulation of PWM inverters with zero steady-state error,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 814-822, May 2003.
[57] B.-H. Bae and S.-K. Sul, “A compensation method for time delay of full-digital synchronous frame current regulator of PWM ac drives,” IEEE Trans. Ind. Applicat., vol. 39, no. 3, pp. 802-810, May/June 2003.
[58] E. Wu and P. W. Lehn, “Digital current control of a voltage source converter with active damping of LCL resonance,” IEEE Trans. Power Electron., vol. 21, no. 5, pp. 1364-1373, Sep. 2006.
[59] S. A. Larrinaga, M. A. R. Vidal, E. Oyarbide, and J. R. T. Apraiz, “Predictive control strategy for dc/ac converters based on direct power control,” IEEE Trans. Ind. Electron., vol. 54, no. 3, pp. 1261-1271, June 2007.
[60] D. Zhi, L. Xu, and B. W. Williams, “Improved direct power control of grid-connected dc/ac converters,” IEEE Trans. Power Electron., vol. 24, no. 5, pp. 1280-1292, May 2009.
[61] T. Suzuki and B. Tech, “Dc power supply system with inverting substations for traction systems using regenerative brakes,” IEE Proc. B, vol. 129, no. 1, pp. 18-26, Jan. 1982.
[62] P. J. Randewijk and J. H. R. Enslin, “Inverting dc traction substation with active power filter incorporated,” in IEEE 26th Annual Power Electronics Specialists Conference, 1995, pp. 360-366.
[63] A. Horn, R. H. Wilkinson, and J. H. R. Enslin, “Evaluation of converter topologies for improved power quality in dc traction substations,” in ISIE’96 Proceedings of the IEEE International Symposium, 1996, pp. 802-807.
[64] V. Blasko, “Power conditions and control of a regenerative brake,” in IEEE Industry Applications Conference 33rd IAS Annual Meeting, 1998, pp. 1504-1510.
[65] S. Ogasawara, J. Takagaki, H. Akagi, and A. Nabae, “A novel control scheme of a parallel current-controlled PWM inverter,” IEEE Trans. Ind. Applicat., vol. 28, no. 5, pp. 1023-1030, Sep./Oct. 1992.
[66] M. C. Chandorkar, D. M. Divan, and R. Adapa, “Control of parallel connected inverters in standalone ac supply systems,” IEEE Trans. Ind. Applicat., vol. 29, no. 1, pp. 136-143, Jan./Feb. 1993.
[67] U. Borup, F. Blaabjerg, and P. N. Enjeti, “Sharing of nonlinear load in parallel-connected three-phase converters,” IEEE Trans. Ind. Applicat., vol. 37, no. 6, pp. 1817-1823, Nov./Dec. 2001.
[68] Z. Ye, D. Boroyevich, J.-Y. Choi, and F. C. Lee, “Control of circulating current in two parallel three-phase boost rectifiers,” IEEE Trans. Power Electron., vol. 17, no. 5, pp. 609-615, Sep. 2002.
[69] S. K. Mazumder, “A novel discrete control strategy for independent stabilization of parallel three-phase boost converters by combining space-vector modulation with variable-structure control,” IEEE Trans. Power Electron., vol. 18, no. 4, pp. 1070-1083, July 2003.
[70] S. K. Mazumder, “Continuous and discrete variable-structure controls for parallel three-phase boost rectifier,” IEEE Trans. Ind. Electron., vol. 52, no. 2, pp. 340-354, Apr. 2005.
[71] C.-T. Pan and Y.-H. Liao, “Modeling and coordinate control of circulating currents in parallel three-phase boost rectifiers,” IEEE Trans. Ind. Electron., vol. 54, no. 2, pp. 825-838, Apr. 2007.
[72] C.-T. Pan and Y.-H. Liao, “Modeling and control of circulating currents for parallel three-phase boost rectifiers with different load sharing,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2776-2785, July 2008.
[73] M. S. Adler and S. R. Westbrook, “Power semiconductor switching devices-A comparison based on inductive switching,” IEEE Trans. Electron Devices, vol. ED29, no. 6, pp. 947-952, June 1982.
[74] B. J. Baliga, “Power semiconductor devices for variable-frequency drives,” Proc. IEEE, vol. 82, no. 8, pp. 1112-1122, Aug. 1994.
[75] B. J. Baliga, “The future of power semiconductor device technology,” Proc. IEEE, vol. 89, no. 6, pp. 822-832, June 2001.
[76] L. Chen and F. Z. Peng, “Dead-time elimination for voltage source inverters,” IEEE Trans. Power Electron., vol. 23, no. 2, pp. 574-580, Mar. 2008.
[77] J.-H. Kim, S.-K. Sul, and P. N. Enjeti, “A carrier-based PWM method with optimal switching sequence for a multilevel four-leg voltage-source inverter,” IEEE Trans. Ind. Applicat., vol. 44, no. 4, pp. 1239-1248, Jul./Aug. 2008.
[78] J. Hobraiche, J.-P. Vilain, P. Macret, and N. Patin, “A new PWM strategy to reduce the inverter input current ripples,” IEEE Trans. Power Electron., vol. 24, no. 1, pp. 172-179, Jan. 2009.
[79] K.-S. Kim, Y.-G. Jung, and Y.-C. Lim, “A new hybrid random PWM scheme,” IEEE Trans. Power Electron., vol. 24, no. 1, pp. 192-200, Jan. 2009.
[80] D. V. Ghodke, Sreeraj E. S., K. Chatterjee, and B. G. Fernandes, “One-cycle-controlled bidirectional ac-to-dc converter with constant power factor,” IEEE Trans. Ind. Electron., vol. 56, no. 5, pp. 1499-1510, May 2009.
[81] R. J. Pasterczyk, J.-M. Guichon, J.-L. Schanen, and E. Atienza, “PWM inverter output filter cost-to-losses tradeoff and optimal design,” IEEE Trans. Ind. Applicat., vol. 45, no. 2, pp. 887-897, Mar./Apr. 2009.
[82] A. Bendre, R. Cuzner, and S. Krstic, “Three-level converter system,” IEEE Trans. Ind. Appl. Mag., pp. 12-23, Mar./Apr. 2009.
[83] F. Wang, W. Shen, D. Boroyevich, S. Ragon, V. Stefanovic, and M. Arpilliere, “Voltage source inverter,” IEEE Trans. Ind. Appl. Mag., pp. 24-33, Mar./Apr. 2009.
[84] S. B. Dewan and J. B. Forsythe, “Harmonic analysis of a synchronized pulse-width-modulated three-phase inverter,” IEEE Trans. Ind. Applicat., vol. IA-10, no. 1, pp. 117-122, Jan./Feb. 1974.
[85] J. Holtz, “Pulsewidth modulation-A survey,” IEEE Trans. Ind. Electron., vol. 39, no. 5, pp. 410-420, Dec. 1992.
[86] D. G. Holmes, “The significance of zero space vector placement for carrier-based PWM schemes,” IEEE Trans. Ind. Applicat., vol. 32, no. 5, pp. 1122-1129, Sep./Oct. 1996.
[87] K. Xing, F. C. Lee, D. Boroyevich, Z. Ye, and S. Mazumder, “Interleaved PWM with discontinuous space-vector modulation,” IEEE Trans. Power Electron., vol. 14, no. 5, pp. 906-917, Sep. 1999.
[88] A. M. Hava, T. A. Lipo, and W. L. Erdman, “Utility interface issues for line connected PWM voltage source converters: a comparative study,” in IEEE 10th Annual Applied Power Electronics Conference, 1995, pp. 125-132.
[89] A. M. Hava, R. J. Kerkman, and T. A. Lipo, “A high-performance generalized discontinuous PWM algorithm,” IEEE Trans. Ind. Applicat., vol. 34, no. 5, pp. 1059-1071, Sep./Oct. 1998.
[90] A. M. Hava, R. J. Kerkman, and T. A. Lipo, “Simple analytical and graphical methods for carrier-based PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 1, pp. 49-61, Jan. 1999.
[91] A. M. Hava, S.-K. Sul, R. J. Kerkman, and T. A. Lipo, “Dynamic overmodulation characteristics of triangle intersection PWM methods,” IEEE Trans. Ind. Applicat., vol. 35, no. 4, pp. 896-907, Jul./Aug. 1999.
[92] G. Oriti, A. L. Julian, and T. A. Lipo, “A new space vector modulation strategy for common mode voltage reduction,” in IEEE 28th Annual Power Electronics Specialists Conference, 1997, pp. 1541-1546.
[93] S. Ogasawara, H. Ayano, and H. Akagi, “An active circuit for cancellation of common-mode voltage generated by a PWM inverter,” IEEE Trans. Power Electron., vol. 13, no. 5, pp. 835-841, Sep. 1998.
[94] H.-D. Lee and S.-K. Sul, “A common mode voltage reduction in boost rectifier/inverter system by shifting active voltage vector in a control period,” IEEE Trans. Power Electron., vol. 15, no. 6, pp. 1094-1101, Nov. 2000.
[95] H.-D. Lee and S.-K. Sul, “Common-mode voltage reduction method modifying the distribution of zero-voltage vector in PWM converter/inverter system,” IEEE Trans. Ind. Applicat., vol. 37, no. 6, pp. 1732-1738, Nov./Dec. 2001.
[96] Y.-S. Lai and F.-S. Shyu, “Optimal common-mode voltage reduction PWM technique for inverter control with consideration of the dead-time effects-Part I: basic development,” IEEE Trans. Ind. Applicat., vol. 40, no. 6, pp. 1605-1612, Nov./Dec. 2004.
[97] Y.-S. Lai, P.-S. Chen, H.-K. Lee, and J. Chou, “Optimal common-mode voltage reduction PWM technique for inverter control with consideration of the dead-time effects-Part II: applications to IM drives with diode front end,” IEEE Trans. Ind. Applicat., vol. 40, no. 6, pp. 1613-1620, Nov./Dec. 2004.
[98] A. M. Hava and E. Un, “Performance analysis of reduced common-mode voltage PWM methods and comparison with standard PWM methods for three-phase voltage source inverters,” IEEE Trans. Power Electron., vol. 24, no. 1, pp. 241-252, Jan. 2009.
[99] E. Un and A. M. Hava, “A near-state PWM method with reduced switching losses and reduced common-mode voltage for three-phase voltage source inverters,” IEEE Trans. Ind. Applicat., vol. 45, no. 2, pp. 782-793, Mar./Apr. 2009.