簡易檢索 / 詳目顯示

研究生: 黃民鈞
Huang, Min-Jyun
論文名稱: 高局域性低損耗混合式表面電漿波導管之設計與分析
Design and Analysis of Low Loss High Confinement Hybrid Surface Plasmon Polariton Waveguides
指導教授: 陳金順
Chen, Jin-Shun
口試委員: 柳克強
林諭男
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 97
中文關鍵詞: 表面電漿波導管
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用高頻電磁模擬軟體HFSS來設計和分析表面電漿波導管結構,並透過計算訊號的傳遞距離,模態的局域性等表面電漿模態特性來分析結構的效能表現,同時藉由HFSS分析其電磁場特性來驗證計算的結果。
    本論文提出金屬覆蓋頂部混合式表面電漿波導管(metal on top surface plasmon polariton waveguide,MOP SPP WG)的結構改良,改變了金屬層的厚度,使損耗降低進而提升訊號傳遞距離同時在場局域性(意即模態的範圍大小)也有不錯的表現,接著分析在不同的金屬厚度下,調整結構的寬度對於表面電漿模態的影響,找出訊號傳遞距離和模態範圍大小隨結構寬度變化的趨勢。
    接著利用在傳統的介電質波導管中場會集中在高折射係數介電質內的原理,改變低折射係數介電質層(RR-P3HT)在水平方向的結構形狀,將RR-P3HT層設計成一T型形狀(T-shape RR-P3HT metal on top surface plasmon polariton waveguide,TSR MOP SPP WG),使在不同區域等效折射係數不同,模態分布往介電質的方向移動,降低場與金屬的接觸來達到減少損耗的目的。最後設計一延伸並固定高等效折射係數介電質層(Silicon)寬度,縮短金屬/RR-P3HT層寬度的結構(silicon extend metal on top surface plasmon polariton waveguide,SE MOP SPP WG)來達到兩個目的:1.降低場與金屬區域的接觸範圍,使模態的能量損耗降低2.使模態向下移動,遠離金屬區域,並由模擬計算分析對訊號傳遞距離和場的局域性的影響。


    目錄 摘要 I ABSTRACT II 誌謝 III 第一章 引言 1 1.1研究背景 1 1.2動機和論文架構 3 第二章 文獻回顧 5 2.1各類表面電漿波導管之並分析其優缺點和應用 5 2.2混合式表面電漿波導管之文獻回顧與討論 12 第三章 基礎理論 25 3.1德魯德模型(DRUDE MODEL)[1]、[17] 25 3.2單一金屬-介電質表面電漿子理論推導與色散關係式[1]、[17] 28 第四章 模擬方法 33 4.1電磁模擬軟體介紹[21] 33 4.2 HFSS計算訊號傳播長度與等效折射係數以及模態區域、POWER RATIO[21] 37 第五章 結果與討論 45 5.1金屬在上混合式介電質負載表面電漿波導管(MOP HDLSPP WG)的結構變化 45 5.2 金屬厚度之變化 51 5.3 RR-P3HT層水平方向結構之變化 64 5.4 SILICON層水平方向結構之變化 68 第六章 結論 81 附錄 83 附錄A.傳播長度之公式推導 83 附錄B.表面電漿子行為延伸探討 86 附綠C.模擬結果之完整電磁場分布比較圖. 88 參考文獻 96

    參考文獻
    [1] 吳民耀、劉威志, "表面電漿子理論與模擬," 物理雙月刊, vol. 廿八卷二期, 2006.
    [2] H. A. Atwater, "The promise of plasmonics," Scientific American, vol. 296, pp. 56-63, Apr 2007.
    [3] R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, "A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation," Nature Photonics, vol. 2, pp. 496-500, Aug 2008.
    [4] R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, "Confinement and propagation characteristics of subwavelength plasmonic modes," New Journal of Physics, vol. 10, Oct 2008.
    [5] A. V. Krasavin and A. V. Zayats, "Silicon-based plasmonic waveguides," Optics Express, vol. 18, pp. 11791-11799, May 2010.
    [6] E. Verhagen, M. Spasenovic, A. Polman, and L. Kuipers, "Nanowire Plasmon Excitation by Adiabatic Mode Transformation," Physical Review Letters, vol. 102, May 2009.
    [7] J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, "Hybrid long-range surface plasmon-polariton modes with tight field confinement guided by asymmetrical waveguides," Optics Express, vol. 17, pp. 23603-23609, Dec 2009.
    [8] S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, "Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration," Optics Express, vol. 19, pp. 8888-8902, Apr 2011.
    [9] H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, "Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components," Applied Physics Letters, vol. 96, May 31 2010.
    [10] D. Dai, Y. Shi, S. He, L. Wosinski, and L. Thylen, "Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium," Optics Express, vol. 19, pp. 12925-12936, Jul 4 2011.
    [11] J. Wang, X. Guan, Y. He, Y. Shi, Z. Wang, S. He, P. Holmstroem, L. Wosinski, L. Thylen, and D. Dai, "Sub-mu m(2) power splitters by using silicon hybrid plasmonic waveguides," Optics Express, vol. 19, pp. 838-847, Jan 17 2011.
    [12] L. Yang, C. Min, and G. Veronis, "Guided subwavelength slow-light mode supported by a plasmonic waveguide system," Optics Letters, vol. 35, pp. 4184-4186, Dec 15 2010.
    [13] Y. Kou and X. Chen, "Multimode interference demultiplexers and splitters in metal-insulator-metal waveguides," Optics Express, vol. 19, pp. 6042-6047, Mar 28 2011.
    [14] S. Sederberg, V. Van, and A. Y. Elezzabi, "Monolithic integration of plasmonic waveguides into a complimentary metal-oxide-semiconductor- and photonic-compatible platform," Applied Physics Letters, vol. 96, Mar 22 2010.
    [15] A. V. Krasavin and A. V. Zayats, "Guiding light at the nanoscale: numerical optimization of ultrasubwavelength metallic wire plasmonic waveguides," Optics Letters, vol. 36, pp. 3127-3129, Aug 15 2011.
    [16] S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, "Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits," Applied Physics Letters, vol. 98, Jan 10 2011.
    [17] 邱國斌、蔡定平, "金屬表面電漿簡介," 物理雙月刊, vol. 廿八卷二期, 2006.
    [18] Y. Bian, Z. Zheng, Y. Liu, J. Liu, J. Zhu, and T. Zhou, "Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deep-subwavelength mode confinement," Optics Express, vol. 19, pp. 22417-22422, Nov 7 2011.
    [19] T. W. Gan Zhou, Pan Cao, Hui Xie, Fangfei Liu, Yikai Su, "Design of plasmon waveguide with strong field confinement and low loss for nonlinearity enhancement," IEEE, 2010.
    [20] T. Tamir, "Integrated Optics," ed, 1979.
    [21] 李. 丁海強, HFSS原理與工程應用, 2009.
    [22] R. Ruppin, "Electromagnetic energy density in a dispersive and absorptive material," Physics Letters A, vol. 299, pp. 309-312, Jul 2002.
    [23] H. S. Chu, Y. A. Akimov, P. Bai, and E. P. Li, "Hybrid dielectric-loaded plasmonic waveguide and wavelength selective components for efficiently controlling light at subwavelength scale," Journal of the Optical Society of America B-Optical Physics, vol. 28, pp. 2895-2901, Dec 2011.
    [24] D. X. Dai and S. L. He, "A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement," Optics Express, vol. 17, pp. 16646-16653, Sep 2009.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE