研究生: |
劉柏亨 Liu, Bo-Heng |
---|---|
論文名稱: |
具有纖維母細胞方向性質之水膠管 應用於建構三維原始心管 Hydrogel Provides with Fibroblast Directional Properties Applied to Construct 3-D Primitive Heart Tube |
指導教授: |
曾繁根
Tseng, Fan-Gang |
口試委員: |
廖容儷
Liao, Rong-Lih 饒達仁 Yao, Da-Jeng |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 93 |
中文關鍵詞: | 心肌細胞 、心臟模型 、纖維母細胞 |
外文關鍵詞: | cardiomyocyte, heart model, fibroblast |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此平台利用生物化學能驅動微流體而組織結構能提供最原始心臟的收縮舒張之生物力學模型,本研究的突破在於將心肌細胞一維方向的收縮舒張性質藉由支架結構的建立轉變成三維性質之力學響應,而能提供生物心肌細胞之收縮舒張應力、壓力、流量變化、質傳能力等等,為模擬真實心臟質傳系統的生理環境。
本實驗有兩種主導方式來規範細胞生長取向,基材幾何主導(Geometric dominate)和製程扭曲主導(liquid rope coiling dominate),兩種主導方式來自於調控製程的流道大小的配比、流體黏製係數、流量等相關參數。基材幾何主導是在二維彎曲的平面系統下成長,會因為彎曲的程度不同,進而影響到細胞成長的取向。製程扭曲主導是製程中的水膠管因在固化溶液中進行穩定的動態平衡,捲繞將對水膠管產生彎曲及扭轉等應力,經固化的過程把殘留表面的應力給記憶起來,表面具有應力應變的次微結構。當捲繞性越強時,能產生的應力應變也越強,使起產生沿著扭曲方向的次微結構。
搭配兩種主導細胞生長的方是和水膠分離技術能在不傷害細胞,其離子濃度相當於正常人體血管的環境下分離水膠管,分離後結構完整,並且保有原本細胞功能,建構心肌纖維組織管並且能穩定提供0.35Hz的作動頻率。
This platform utilizes biochemical energy to drive microfluidics and the tissue structure provides the biomechanical model of systolic and relaxation of the primitive heart tube. This study is to transform the systolic and diastolic properties of myocardial cells in one dimension by three-dimensional properties that the mechanical response can provide the systolic and diastolic stress, pressure, flow change, quality transfer ability of the cardiomyocytes, etc., to simulate the physiological environment of the real heart circulatory system.
There are two main ways to regulate cell growth orientation, the geometric dominate and the liquid rope coiling dominate. The two dominant methods are the ratio of the flow path size of the control process, fluid viscosity, and flow rate. The two dominant methods are controlled by the flow channel size, fluid viscosity, flow rate and other related parameters of the control process.
The geometry of the substrate is dominated by a two-dimensional curved planar system, which affects the orientation of cell growth due to the degree of bending.
The fabrication process is the stable dynamic balance of the hydrogel in the curing process. The coiling process will cause bending and torsion stress on the hydrogel. The curing process will memorize the residual surface stress and the surface has a stress-strained sub-microstructure. The stronger coiling, the stronger strain that be generated, resulting in the generation of sub-microstructures along the twisting direction.
The combination of the two dominant cell growth methods and the hydrogel separation can separate the hydrogel without damaging the cells, and the ion concentration is equivalent to the normal human blood vessel. After separation, the structure is intact, and the original cell function is preserved, and the myocardial fiber tissue is constructed and the pumping frequency of 0.35 Hz that be stably provided.
[1] Perestrelo, A. R., Águas, A. C., Rainer, A., & Forte, G. (2015). Microfluidic organ/body-on-a-chip devices at the convergence of biology and microengineering. Sensors, 15(12), 31142-31170.
[2] Scannell, J. W., Blanckley, A., Boldon, H., & Warrington, B. (2012). Diagnosing the decline in pharmaceutical R&D efficiency. Nature reviews Drug discovery, 11(3), 191.
[3] Whitesides, G. M. (2006). The origins and the future of microfluidics. Nature, 442(7101), 368.
[4] Venes, D. (2009). Taber's cyclopedic medical dictionary. FA Davis.
[5] Shin, H., Jo, S., & Mikos, A. G. (2003). Biomimetic materials for tissue engineering. Biomaterials, 24(24), 4353-4364.
[6] Yang, S., Leong, K. F., Du, Z., & Chua, C. K. (2001). The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue engineering, 7(6), 679-689.
[7] Onoe, H., Okitsu, T., Itou, A., Kato-Negishi, M., Gojo, R., Kiriya, D., ... & Matsunaga, Y. T. (2013). Metre-long cell-laden microfibres exhibit tissue morphologies and functions. Nature materials, 12(6), 584.
[8] Higuchi, A., Ling, Q. D., Ko, Y. A., Chang, Y., & Umezawa, A. (2011). Biomaterials for the feeder-free culture of human embryonic stem cells and induced pluripotent stem cells. Chemical reviews, 111(5), 3021-3035.
[9] Rich, A. K. H. A., & Harris, A. K. (1981). Anomalous preferences of cultured macrophages for hydrophobic and roughened substrata. Journal of cell science, 50(1), 1-7.
[10] Li, X., Jin, L., Balian, G., Laurencin, C. T., & Anderson, D. G. (2006). Demineralized bone matrix gelatin as scaffold for osteochondral tissue engineering. Biomaterials, 27(11), 2426-2433.
[11] 汪俐穎. (2010). 溫感性高分子應用於具釋放細胞功能之細胞篩選晶片. 清華大學工程與系統科學系學位論文, 1-55.
[12] Nagase, K., Kobayashi, J., & Okano, T. (2009). Temperature-responsive intelligent interfaces for biomolecular separation and cell sheet engineering. Journal of the Royal Society Interface, 6(Suppl 3), S293-S309.
[13] Nichol, J. W., Koshy, S. T., Bae, H., Hwang, C. M., Yamanlar, S., & Khademhosseini, A. (2010). Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials, 31(21), 5536-5544.
[14] Li, Z., Ramay, H. R., Hauch, K. D., Xiao, D., & Zhang, M. (2005). Chitosan–alginate hybrid scaffolds for bone tissue engineering. Biomaterials, 26(18), 3919-3928.
[15] Rao, C., Prodromakis, T., Kolker, L., Chaudhry, U. A., Trantidou, T., Sridhar, A., ... & Yacoub, M. H. (2013). The effect of microgrooved culture substrates on calcium cycling of cardiac myocytes derived from human induced pluripotent stem cells. Biomaterials, 34(10), 2399-2411.
[16] Neubauer, S. (2007). The failing heart—an engine out of fuel. New England Journal of Medicine, 356(11), 1140-1151.
[17] Burridge, P. W., Matsa, E., Shukla, P., Lin, Z. C., Churko, J. M., Ebert, A. D., ... & Plews, J. R. (2014). Chemically defined generation of human cardiomyocytes. Nature methods, 11(8), 855.
[18] Lian, X., Zhang, J., Azarin, S. M., Zhu, K., Hazeltine, L. B., Bao, X., ... & Palecek, S. P. (2013). Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nature protocols, 8(1), 162.
[19] Fathi, F., Murasawa, S., Hasegawa, S., Asahara, T., Kermani, A. J., & Mowla, S. J. (2009). Cardiac differentiation of P19CL6 cells by oxytocin. International journal of cardiology, 134(1), 75-81.
[20] Kocica, M. J., Corno, A. F., Carreras-Costa, F., Ballester-Rodes, M., Moghbel, M. C., Cueva, C. N., ... & Torrent-Guasp, F. (2006). The helical ventricular myocardial band: global, three-dimensional, functional architecture of the ventricular myocardium. European journal of cardio-thoracic surgery, 29(Supplement_1), S21-S40.
[21] Nasiraei-Moghaddam, A., & Gharib, M. (2009). Evidence for the existence of a functional helical myocardial band. American Journal of Physiology-Heart and Circulatory Physiology, 296(1), H127-H131.
[22] Stephenson, R. S., Agger, P., Lunkenheimer, P. P., Zhao, J., Smerup, M., Niederer, P., ... & Jarvis, J. C. (2016). The functional architecture of skeletal compared to cardiac musculature: Myocyte orientation, lamellar unit morphology, and the helical ventricular myocardial band. Clinical Anatomy, 29(3), 316-332.
[23] Epstein, J. A., Aghajanian, H., & Singh, M. K. (2015). Semaphorin signaling in cardiovascular development. Cell metabolism, 21(2), 163-173.
[24] Taylor, E. N., Hoffman, M. P., Barefield, D. Y., & Aninwene, G. E. (2016). Alterations in multi‐scale cardiac architecture in association with phosphorylation of myosin binding protein‐C. Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease, 5(3).
[25] Greenbaum, R. A., Ho, S. Y., Gibson, D. G., Becker, A. E., & Anderson, R. H. (1981). Left ventricular fibre architecture in man. Heart, 45(3), 248-263.
[26] Lombaert, H., Peyrat, J. M., Croisille, P., Rapacchi, S., Fanton, L., Cheriet, F., ... & Ayache, N. (2012). Human atlas of the cardiac fiber architecture: study on a healthy population. IEEE transactions on medical imaging, 31(7), 1436-1447.
[27] Badie, N., Satterwhite, L., & Bursac, N. (2009). A method to replicate the microstructure of heart tissue in vitro using DTMRI-based cell micropatterning. Annals of biomedical engineering, 37(12), 2510.
[28] Qiu, Y., Bayomy, A. F., Gomez, M. V., Bauer, M., Du, P., Yang, Y., ... & Liao, R. (2015). A role for matrix stiffness in the regulation of cardiac side population cell function. American Journal of Physiology-Heart and Circulatory Physiology, 308(9), H990-H997.
[29] Downing, T. L., Soto, J., Morez, C., Houssin, T., Fritz, A., Yuan, F., ... & Li, S. (2013). Biophysical regulation of epigenetic state and cell reprogramming. Nature materials, 12(12), 1154.
[30] Hsieh, H. Y., Camci-Unal, G., Huang, T. W., Liao, R., Chen, T. J., Paul, A., ... & Khademhosseini, A. (2014). Gradient static-strain stimulation in a microfluidic chip for 3D cellular alignment. Lab on a Chip, 14(3), 482-493.
[31] Zhang, Y. S., Arneri, A., Bersini, S., Shin, S. R., Zhu, K., Goli-Malekabadi, Z., ... & Bishop, C. (2016). Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials, 110, 45-59.
[32] Mazzitelli, S., Capretto, L., Carugo, D., Zhang, X., Piva, R., & Nastruzzi, C. (2011). Optimised production of multifunctional microfibres by microfluidic chip technology for tissue engineering applications. Lab on a Chip, 11(10), 1776-1785.
[33] Yamada, M., Utoh, R., Ohashi, K., Tatsumi, K., Yamato, M., Okano, T., & Seki, M. (2012). Controlled formation of heterotypic hepatic micro-organoids in anisotropic hydrogel microfibers for long-term preservation of liver-specific functions. Biomaterials, 33(33), 8304-8315.
[34] Kang, E., Jeong, G. S., Choi, Y. Y., Lee, K. H., Khademhosseini, A., & Lee, S. H. (2011). Digitally tunable physicochemical coding of material composition and topography in continuous microfibres. Nature materials, 10(11), 877.
[35] Morimoto, Y., Mori, S., Sakai, F., & Takeuchi, S. (2016). Human induced pluripotent stem cell-derived fiber-shaped cardiac tissue on a chip. Lab on a Chip, 16(12), 2295-2301.
[36] Grosberg, A., Alford, P. W., McCain, M. L., & Parker, K. K. (2011). Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip. Lab on a chip, 11(24), 4165-4173.
[37] Tanaka, Y., & Fujita, H. (2015). Fluid driving system for a micropump by differentiating iPS cells into cardiomyocytes on a tent-like structure. Sensors and Actuators B: Chemical, 210, 267-272.
[38] Tanaka, Y., Morishima, K., Shimizu, T., Kikuchi, A., Yamato, M., Okano, T., & Kitamori, T. (2006). Demonstration of a PDMS-based bio-microactuator using cultured cardiomyocytes to drive polymer micropillars. Lab on a Chip, 6(2), 230-235.
[39] Herr, H., & Dennis, R. G. (2004). A swimming robot actuated by living muscle tissue. Journal of neuroengineering and rehabilitation, 1(1), 6.
[40] Tanaka, Y., Sato, K., Shimizu, T., Yamato, M., Okano, T., & Kitamori, T. (2007). A micro-spherical heart pump powered by cultured cardiomyocytes. Lab on a Chip, 7(2), 207-212.
[41] Tanaka, Y., Morishima, K., Shimizu, T., Kikuchi, A., Yamato, M., Okano, T., & Kitamori, T. (2006). An actuated pump on-chip powered by cultured cardiomyocytes. Lab on a Chip, 6(3), 362-368.
[42] Ribe, N. M., Habibi, M., & Bonn, D. (2012). Liquid rope coiling. Annual review of fluid mechanics, 44, 249-266.
[43] Louch, W. E., Sheehan, K. A., & Wolska, B. M. (2011). Methods in cardiomyocyte isolation, culture, and gene transfer. Journal of molecular and cellular cardiology, 51(3), 288-298.
[44] Ehler, E., Moore-Morris, T., & Lange, S. (2013). Isolation and culture of neonatal mouse cardiomyocytes. Journal of visualized experiments: JoVE, (79).