研究生: |
吳恭和 Gong-Her Wu |
---|---|
論文名稱: |
麩胺酸受器副本基因在斑馬魚胚體及成熟魚腦表現之研究 |
指導教授: |
周姽嫄
Wei-Yuan Chow |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 33 |
中文關鍵詞: | 麩胺酸受器 、斑馬魚 |
外文關鍵詞: | NR1, zrbrafish, GluR2, glutamate receptor |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一般認為脊椎動物演化過程中,發生了數次大片段或全基因體之複製,導致一個原始基因在脊椎動物體中常常有數個副本基因(duplicated gene)。硬骨魚類又有一次大規模的基因體複製,造成魚類中特有的副本基因。麩胺酸(glutamate)是中樞神經系統中一種主要的興奮性神經傳導物質,麩胺酸所引發之神經傳導訊息由一群麩胺酸受器(glutamate receptor)負責傳導。離子通道型麩胺酸受器(ionotropic glutamate receptor) 依據藥理學可細分為AMPA受器、kinate受器以及NMDA受器。GluR2 是AMPA 受器的次單元,斑馬魚有兩個GluR2副本基因 (paralogue),分別為GluR2α和GluR2β。NR1是NMDA受器的次單元,斑馬魚有兩個NR1副本基因,分別為NR1.1以及NR1.2。目前針對副本基因保存有許多假設,其中一種所謂DDC模式(duplication-degeneration-complementation model),此種模式預期複製後的副本基因在不同調節片段可能發生失去功能的突變,導致副本基因彼此之間必須相互彌補另一副本基因缺少的功能,因而二個基因都必須被保留。若DCC機制也涉及魚類GluR2及NR1副本基因之保留,則副本基因彼此的表現區域也會不同。我們以全覆式RNA原位雜合染色技術(Whole-mount in situ hybridization)分析GluR2及NR1這兩對副本基因表現區域,發現斑馬魚胚體在視網膜細胞中GluR2β的表現於受精後二至三日間開始顯著增加,而同時間GluR2α在視網膜細胞的表現則只微幅增加。成熟魚腦中端腦(Tel, telencephalon)、視頂蓋(TeO, tectum opticum)及小腦體(CCe, corpus cerebelli)等部位GluR2β表現皆高於GluR2α。成熟魚腦NR1.1以及NR1.2這對副本基因在視頂蓋、小腦體及小腦尾葉(LCA, lobus caudalis cerebelli)等部位有互補性之區域表現。基因表現研究顯示DCC機制也參與演化上保留斑馬魚離子通道型麩胺酸受器基因GluR2及NR1副本基因。
Partial or complete genomic duplications have occurred several times during the evolution of vertebrates, resulting in several duplicated genes derived from a common ancestral gene. Ionotropic glutamate receptors (iGluRs) mediate excitatory synaptic transmission in the vertebrate central nervous system. The ionotropic glutamate receptors are classified into three major subtypes, the AMPA-, kainite-, and NMDA-preferring receptors. Zebrafish expresses two duplicated GluR2 genes, GluR2α and GluR2β, as well as two duplicated NR1 genes, NR1.1 and NR1.2. Duplication-degeneration complementation (DDC) is a model hypothesized to preserve duplicated genes. If DDC is involved in the preservation of duplicated genes, the expression patterns of the paralogous genes are expected to be different and compensatory. In this thesis, whole-mount in situ hybridization was employed to study the expression patterns of GluR2 and NR1 duplicated genes. Experimental results showed that the expression of GluR2β increased significantly in the retina of zebrafish between 2 to 3 day postfertilization; however the expression of GluR2α in the retina increased only mildly over the same peroid. The expression of GluR2β in the telencephalon, tectum opticum and corpus cerebelli are higher than that of GluR2α. The expressions of NR1.1 and NR1.2 are complementary in the regions of telencephalon, corpus cerebelli and lobus caudalis cerebelli. These results showed that DDC may be involved in the preservation of duplicated genes of GluR2 and NR1 during evolution.
參考文獻
Bahn, S., Volk, B., and Wisden, W. (1994). Kainate receptor gene expression in the developing rat brain. J Neurosci 14, 5525-5547.
Chen, Y. C., Kung, S. S., Chen, B. Y., Hung, C. C., Chen, C. C., Wang, T. Y., Wu, Y. M., Lin, W. H., Tzeng, C. S., and Chow, W. Y. (2001). Identifications, classification, and evolution of the vertebrate alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor subunit genes. J Mol Evol 53, 690-702.
Ciabarra, A. M., Sullivan, J. M., Gahn, L. G., Pecht, G., Heinemann, S., and Sevarino, K. A. (1995). Cloning and characterization of chi-1: a developmentally regulated member of a novel class of the ionotropic glutamate receptor family. J Neurosci 15, 6498-6508.
Constantine-Paton, M., and Cline, H. T. (1998). LTP and activity-dependent synaptogenesis: the more alike they are, the more different they become. Curr Opin Neurobiol 8, 139-148.
Cox, J. A., Kucenas, S., and Voigt, M. M. (2005). Molecular characterization and embryonic expression of the family of N-methyl-D-aspartate receptor subunit genes in the zebrafish. Dev Dyn 234, 756-766.
Feldman, D. E., and Knudsen, E. I. (1998). Experience-dependent plasticity and the maturation of glutamatergic synapses. Neuron 20, 1067-1071.
Force, A., Lynch, M., Pickett, F. B., Amores, A., Yan, Y. L., and Postlethwait, J. (1999). Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151, 1531-1545.
Herb, A., Burnashev, N., Werner, P., Sakmann, B., Wisden, W., and Seeburg, P. H. (1992). The KA-2 subunit of excitatory amino acid receptors shows widespread expression in brain and forms ion channels with distantly related subunits. Neuron 8, 775-785.
Hollmann, M., and Heinemann, S. (1994). Cloned glutamate receptors. Annu Rev Neurosci 17, 31-108.
Ishii, T., Moriyoshi, K., Sugihara, H., Sakurada, K., Kadotani, H., Yokoi, M., Akazawa, C., Shigemoto, R., Mizuno, N., Masu, M., and et al. (1993). Molecular characterization of the family of the N-methyl-D-aspartate receptor subunits. J Biol Chem 268, 2836-2843.
Kinoshita, M., Fukaya, M., Tojima, T., Kojima, S., Ando, H., Watanabe, M., Urano, A., and Ito, E. (2005). Retinotectal transmission in the optic tectum of rainbow trout. J Comp Neurol 484, 249-259.
Lee, H. C., Huang, H. Y., Lin, C. Y., Chen, Y. H., and Tsai, H. J. (2006). Foxd3 mediates zebrafish myf5 expression during early somitogenesis. Dev Biol 290, 359-372.
Liu, A., Hoffman, P. W., Lu, W., and Bai, G. (2004). NF-kappaB site interacts with Sp factors and up-regulates the NR1 promoter during neuronal differentiation. J Biol Chem 279, 17449-17458.
Lynch, M., and Conery, J. S. (2000). The evolutionary fate and consequences of duplicate genes. Science 290, 1151-1155.
Matsuda, K., Kamiya, Y., Matsuda, S., and Yuzaki, M. (2002). Cloning and characterization of a novel NMDA receptor subunit NR3B: a dominant subunit that reduces calcium permeability. Brain Res Mol Brain Res 100, 43-52.
Mayer, M. L., and Armstrong, N. (2004). Structure and function of glutamate receptor ion channels. Annu Rev Physiol 66, 161-181.
Mayer, M. L., and Westbrook, G. L. (1987). The physiology of excitatory amino acids in the vertebrate central nervous system. Prog Neurobiol 28, 197-276.
McGinnis, W., and Krumlauf, R. (1992). Homeobox genes and axial patterning. Cell 68, 283-302.
Monaghan, D. T., Olverman, H. J., Nguyen, L., Watkins, J. C., and Cotman, C. W. (1988). Two classes of N-methyl-D-aspartate recognition sites: differential distribution and differential regulation by glycine. Proc Natl Acad Sci U S A 85, 9836-9840.
Moriyoshi, K., Masu, M., Ishii, T., Shigemoto, R., Mizuno, N., and Nakanishi, S. (1991). Molecular cloning and characterization of the rat NMDA receptor. Nature 354, 31-37.
Murakami, T., Ito, H., and Morita, Y. (1986). Telencephalic afferent nuclei in the carp diencephalon, with special reference to fiber connections of the nucleus preglomerulosus pars lateralis. Brain Res 382, 97-103.
Nadeau, J. H., and Sankoff, D. (1997). Comparable rates of gene loss and functional divergence after genome duplications early in vertebrate evolution. Genetics 147, 1259-1266.
Okamoto, N., Hori, S., Akazawa, C., Hayashi, Y., Shigemoto, R., Mizuno, N., and Nakanishi, S. (1994). Molecular characterization of a new metabotropic glutamate receptor mGluR7 coupled to inhibitory cyclic AMP signal transduction. J Biol Chem 269, 1231-1236.
Pohl, B. S., and Knochel, W. (2001). Overexpression of the transcriptional repressor FoxD3 prevents neural crest formation in Xenopus embryos. Mech Dev 103, 93-106.
Riedel, G., Platt, B., and Micheau, J. (2003). Glutamate receptor function in learning and memory. Behav Brain Res 140, 1-47.
Schiffer, H. H., Swanson, G. T., and Heinemann, S. F. (1997). Rat GluR7 and a carboxy-terminal splice variant, GluR7b, are functional kainate receptor subunits with a low sensitivity to glutamate. Neuron 19, 1141-1146.
Schoepp, D. D., and Conn, P. J. (1993). Metabotropic glutamate receptors in brain function and pathology. Trends Pharmacol Sci 14, 13-20.
Sommer, B., Burnashev, N., Verdoorn, T. A., Keinanen, K., Sakmann, B., and Seeburg, P. H. (1992). A glutamate receptor channel with high affinity for domoate and kainate. Embo J 11, 1651-1656.
Stoltzfus, A. (1999). On the possibility of constructive neutral evolution. J Mol Evol 49, 169-181.
Striedter, G. F. (1992). Phylogenetic changes in the connections of the lateral preglomerular nucleus in ostariophysan teleosts: a pluralistic view of brain evolution. Brain Behav Evol 39, 329-357.
Wisden, W., and Seeburg, P. H. (1993). A complex mosaic of high-affinity kainate receptors in rat brain. J Neurosci 13, 3582-3598.