研究生: |
方志宇 Chih-Yeu Fang |
---|---|
論文名稱: |
利用單株抗體來偵測與細胞內單鏈抗體來減低EB病毒的第一型潛伏膜蛋白之作用 Detection and Attenuation of Epstain-Barr Virus Latent Membrane Protein 1 by Monoclonal and Intracellular antibodies |
指導教授: |
張晃猷
Hwan-You Chang |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生命科學系 Department of Life Sciences |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 79 |
中文關鍵詞: | EB病毒 、第一型潛伏膜蛋白 、單株抗體 、單鏈抗體 、噬菌體表現系統 、細胞轉移能力 |
外文關鍵詞: | Epstein-Barr Virus, LMP1, Monoclonal antibody,, scFv antibody, phage display, cell motility |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
EB病毒感染已被證實與許多人類細胞癌化有相關,其中包括B細胞淋巴癌及鼻咽癌。EB病毒的第一型潛伏膜蛋白(LMP1)曾被發現能啟動數種細胞訊息傳導途徑,並且是病毒引發B細胞永生化的主要蛋白質。第一型潛伏膜蛋白亦被發現會降低上皮細胞中細胞黏合蛋白的表現,並且會增加細胞的轉移能力。由於第一型潛伏膜蛋白經常在很多的EB病毒相關的癌症細胞中被發現,並且跟細胞癌化有相當密切的關係。因此,第一型潛伏膜蛋白可以作為臨床診斷以及治療EB病毒感染非常好的目標。本論文的主要研究目標即為偵測第一型潛伏膜蛋白,並且嘗試抑制此蛋白質在引起細胞癌化的相關功能,希望能解決EB病毒有關腫瘤的問題。為了偵測與估計第一型潛伏膜蛋白在細胞內的表現量,實驗中選殖了5個對第一型潛伏膜蛋白專一的單株抗體。這些單株抗體的抗原決定位位於第一型潛伏膜蛋白的CTAR3內的重複序列區,對應到氨基酸254-319之間的位置。這些單株抗體可以辨識不同來源的第一型潛伏膜蛋白,包括淋巴以及表皮組織起源,並且可以應用在免疫墨點法,酵素連結吸附免疫分析法(ELISA)以及免疫細胞螢光染色等偵測上。本研究亦利用這些單株抗體建構了夾層式ELISA (sandwich ELISA)分析法,以用來定量第一型潛伏膜蛋白。由此結果顯示這些單株抗體可以應用在基礎研究或臨床上對於第一型潛伏膜蛋白的偵測及定量。第二部分的研究則是利用噬菌體呈現系統進行對抗第一型潛伏膜蛋白C端的專一單鏈抗體篩檢。經過4次篩檢後得到對第一型潛伏膜蛋白C端的CTAR1,CTAR2及CTAR2區域具有專一性的單鏈抗體。其中一個單鏈抗體scH3,在293細胞中可以抑制第一型潛伏膜蛋白所提昇的NF-kB活性。利用transwell來分析細胞轉移程度的實驗中亦發現,將單鏈抗體scH3表現於具有第一型潛伏膜蛋白的MDCK-LMP1細胞中亦可以抑制細胞的轉移能力。由此得知單鏈抗體scH3在細胞內可以結合至第一型潛伏膜蛋白的C端CTAR1的位置,並且降低其所引發的細胞轉移的能力。這些抗體或許可以提供未來在臨床上治療EB病毒相關的腫瘤上的應用。
Epstein-Barr virus (EBV) has been implicated in the development of many human neoplasias including B lymphomas and nasopharyngeal carcinoma. The EBV latent membrane protein 1 (LMP1) has been found to participate in diverse cellular signaling pathways and is essential for virus-induced B-cell immortalization. LMP1 also down-regulated cell adhesion molecules expression and increase cell motility in epithelial cells. Since LMP1 can be found in many EBV-associated tumors and its role in carcinogenesis, it can be served as a good target for clinical diagnosis and therapy of LMP1-positive tumors. In this study, I focused on the detection of LMP1 and impairment of its functions in vivo. In order to determine quantitatively the amount of LMP1 in cells, five monoclonal antibodies (Mabs) specific to LMP-1 were generated. The epitopes recognized by these Mabs were found to cluster within the repeat region of CTAR3 domains, corresponding to amino acid positions 254-319 of LMP1. These Mabs were capable of recognizing LMP1 proteins of both lymphoid and epithelial origin as revealed by immunoblot, ELISA and immunocytofluorescence analysis. A sandwich ELISA for the quantification of LMP1 has been established using these Mabs. These results indicate that the Mabs generated in this study are suitable for the detection of LMP1 in biomedical research. In the secondary study, a phage display library carrying the human synthetic single-chain Fv (scFv) antibodies was used for screening of recombinant antibody clones that specific to the LMP1 C-terminal. After 4 times of panning, individual clones that react to the CTAR1, CTAR2 and CTAR3 region of LMP1 C-terminal were obtained. These LMP1 C-terminal targeted scFvs were cloned as intrabodies and transfected into LMP1-positive cells. The scFv H3 clone, when co-transfected with LMP1, were found capable of decreasing the NF-kB activity which was upregulated by LMP1 in HEK293 cell. Expression of scFv H3 also reduced cell motility in MDCK-LMP1 cells, as demonstrated by the transwell cell migration assay. These data indicates that the anti-LMP1 C-terminal scFv H3 intrabody has the ability to bind to the LMP1 C-terminal in vivo and can inhibit LMP1 functions in epithelial cells. This scFv antibodies may be useful in attenuating the LMP1 function in LMP1-positive tumors.
Andersson-Anvret, M., Forsby, N., Klein, G., Henle, W. 1977. Relationship between the Epstein-Barr virus and undifferentiated nasopharyngeal carcinoma: correlated nucleic acid hybridization and histopathological examination. Int J Cancer 20, 486-94.
Baichwal, V.R., Sugden, B. 1987. Posttranslational processing of an Epstein-Barr virus-encoded membrane protein expressed in cells transformed by Epstein-Barr virus. J Virol 61, 866-75.
Baichwal, V.R., Sugden, B. 1988. Transformation of Balb 3T3 cells by the BNLF-1 gene of Epstein-Barr virus. Oncogene 2, 461-7.
Biocca, S., Pierandrei-Amaldi, P., Cattaneo, A. 1993. Intracellular expression of anti-p21ras single chain Fv fragments inhibits meiotic maturation of xenopus oocytes. Biochem Biophys Res Commun 197, 422-7.
Brodeur, S.R., Cheng, G., Baltimore, D., Thorley-Lawson, D.A. 1997. Localization of the major NF-kappaB-activating site and the sole TRAF3 binding site of LMP-1 defines two distinct signaling motifs. J Biol Chem 272, 19777-84.
Busson, P., McCoy, R., Sadler, R., Gilligan, K., Tursz, T., Raab-Traub, N. 1992. Consistent transcription of the Epstein-Barr virus LMP2 gene in nasopharyngeal carcinoma. J Virol 66, 3257-62.
Cattaneo, A., Biocca, S. 1999. The selection of intracellular antibodies. Trends Biotechnol 17, 115-21.
Chen, M.L., Tsai, C.N., Liang, C.L., Shu, C.H., Huang, C.R., Sulitzeanu, D., Liu, S.T., Chang, Y.S. 1992. Cloning and characterization of the latent membrane protein (LMP) of a specific Epstein-Barr virus variant derived from the nasopharyngeal carcinoma in the Taiwanese population. Oncogene 7, 2131-40.
Chi, L.M., Yu, J.S., Chang, Y.S. 2002. Identification of protein kinase CK2 as a potent kinase of Epstein-Barr virus latent membrane protein 1. Biochem Biophys Res Commun 294, 586-91.
Clausse, B., Fizazi, K., Walczak, V., Tetaud, C., Wiels, J., Tursz, T., Busson, P. 1997. High concentration of the EBV latent membrane protein 1 in glycosphingolipid-rich complexes from both epithelial and lymphoid cells. Virology 228, 285-93.
der Maur, A.A., Zahnd, C., Fischer, F., Spinelli, S., Honegger, A., Cambillau, C., Escher, D., Pluckthun, A., Barberis, A. 2002. Direct in vivo screening of intrabody libraries constructed on a highly stable single-chain framework. J Biol Chem 277, 45075-85.
Devergne, O., Cahir McFarland, E.D., Mosialos, G., Izumi, K.M., Ware, C.F., Kieff, E. 1998. Role of the TRAF binding site and NF-kappaB activation in Epstein-Barr virus latent membrane protein 1-induced cell gene expression. J Virol 72, 7900-8.
Devergne, O., Hatzivassiliou, E., Izumi, K.M., Kaye, K.M., Kleijnen, M.F., Kieff, E., Mosialos, G. 1996. Association of TRAF1, TRAF2, and TRAF3 with an Epstein-Barr virus LMP1 domain important for B-lymphocyte transformation: role in NF-kappaB activation. Mol Cell Biol 16, 7098-108.
Dukers, D.F., Meij, P., Vervoort, M.B., Vos, W., Scheper, R.J., Meijer, C.J., Bloemena, E., Middeldorp, J.M. 2000. Direct immunosuppressive effects of EBV-encoded latent membrane protein 1. J Immunol 165, 663-70.
Eliopoulos, A.G., Young, L.S. 1998. Activation of the cJun N-terminal kinase (JNK) pathway by the Epstein-Barr virus-encoded latent membrane protein 1 (LMP1). Oncogene 16, 1731-42.
Erickson, K.D., Martin, J.M. 1997. Early detection of the lytic LMP-1 protein in EBV-infected B-cells suggests its presence in the virion. Virology 234, 1-13.
Erickson, K.D., Martin, J.M. 2000. The late lytic LMP-1 protein of Epstein-Barr virus can negatively regulate LMP-1 signaling. J Virol 74, 1057-60.
Fahraeus, R., Fu, H.L., Ernberg, I., Finke, J., Rowe, M., Klein, G., Falk, K., Nilsson, E., Yadav, M., Busson, P., et al. 1988. Expression of Epstein-Barr virus-encoded proteins in nasopharyngeal carcinoma. Int J Cancer 42, 329-38.
Fang, C.Y., Chang, Y.S., Chow, K.P., Yu, J.S., Chang, H.Y. 2004. Construction and characterization of monoclonal antibodies specific to Epstein-Barr virus latent membrane protein 1. J Immunol Methods 287, 21-30.
Fries, K.L., Miller, W.E., Raab-Traub, N. 1999. The A20 protein interacts with the Epstein-Barr virus latent membrane protein 1 (LMP1) and alters the LMP1/TRAF1/TRADD complex. Virology 264, 159-66.
Gires, O., Kohlhuber, F., Kilger, E., Baumann, M., Kieser, A., Kaiser, C., Zeidler, R., Scheffer, B., Ueffing, M., Hammerschmidt, W. 1999. Latent membrane protein 1 of Epstein-Barr virus interacts with JAK3 and activates STAT proteins. Embo J 18, 3064-73.
Gires, O., Zimber-Strobl, U., Gonnella, R., Ueffing, M., Marschall, G., Zeidler, R., Pich, D., Hammerschmidt, W. 1997. Latent membrane protein 1 of Epstein-Barr virus mimics a constitutively active receptor molecule. Embo J 16, 6131-40.
Griffiths, A.D., Williams, S.C., Hartley, O., Tomlinson, I.M., Waterhouse, P., Crosby, W.L., Kontermann, R.E., Jones, P.T., Low, N.M., Allison, T.J., et al. 1994. Isolation of high affinity human antibodies directly from large synthetic repertoires. Embo J 13, 3245-60.
Gulley, M.L. 2001. Molecular diagnosis of Epstein-Barr virus-related diseases. J Mol Diagn 3, 1-10.
Harrison, J.L., Williams, S.C., Winter, G., Nissim, A. 1996. Screening of phage antibody libraries. Methods Enzymol 267, 83-109.
Henderson, B.E., Louie, E., SooHoo Jing, J., Buell, P., Gardner, M.B. 1976. Risk factors associated with nasopharyngeal carcinoma. N Engl J Med 295, 1101-6.
Henderson, S., Rowe, M., Gregory, C., Croom-Carter, D., Wang, F., Longnecker, R., Kieff, E., Rickinson, A. 1991. Induction of bcl-2 expression by Epstein-Barr virus latent membrane protein 1 protects infected B cells from programmed cell death. Cell 65, 1107-15.
Henle, W., Henle, G. 1976. The sero-epidemiology of Epstein-Barr virus. Adv Pathobiol, 5-17.
Huen, D.S., Henderson, S.A., Croom-Carter, D., Rowe, M. 1995. The Epstein-Barr virus latent membrane protein-1 (LMP1) mediates activation of NF-kappa B and cell surface phenotype via two effector regions in its carboxy-terminal cytoplasmic domain. Oncogene 10, 549-60.
Izumi, K.M., Cahir McFarland, E.D., Riley, E.A., Rizzo, D., Chen, Y., Kieff, E. 1999. The residues between the two transformation effector sites of Epstein-Barr virus latent membrane protein 1 are not critical for B-lymphocyte growth transformation. J Virol 73, 9908-16.
Izumi, K.M., Kieff, E.D. 1997. The Epstein-Barr virus oncogene product latent membrane protein 1 engages the tumor necrosis factor receptor-associated death domain protein to mediate B lymphocyte growth transformation and activate NF-kappaB. Proc Natl Acad Sci U S A 94, 12592-7.
Kaye, K.M., Devergne, O., Harada, J.N., Izumi, K.M., Yalamanchili, R., Kieff, E., Mosialos, G. 1996. Tumor necrosis factor receptor associated factor 2 is a mediator of NF-kappa B activation by latent infection membrane protein 1, the Epstein-Barr virus transforming protein. Proc Natl Acad Sci U S A 93, 11085-90.
Kaye, K.M., Izumi, K.M., Mosialos, G., Kieff, E. 1995. The Epstein-Barr virus LMP1 cytoplasmic carboxy terminus is essential for B-lymphocyte transformation; fibroblast cocultivation complements a critical function within the terminal 155 residues. J Virol 69, 675-83.
Kieff, E. (1996). Epstein-Barr virus and its replication. Field Virology. S. E. Straus. Philadephia, Lippincott-Raven: 2343-2396.
Kieser, A., Kaiser, C., Hammerschmidt, W. 1999. LMP1 signal transduction differs substantially from TNF receptor 1 signaling in the molecular functions of TRADD and TRAF2. Embo J 18, 2511-21.
Kieser, A., Kilger, E., Gires, O., Ueffing, M., Kolch, W., Hammerschmidt, W. 1997. Epstein-Barr virus latent membrane protein-1 triggers AP-1 activity via the c-Jun N-terminal kinase cascade. Embo J 16, 6478-85.
Kim, K.R., Yoshizaki, T., Miyamori, H., Hasegawa, K., Horikawa, T., Furukawa, M., Harada, S., Seiki, M., Sato, H. 2000. Transformation of Madin-Darby canine kidney (MDCK) epithelial cells by Epstein-Barr virus latent membrane protein 1 (LMP1) induces expression of Ets1 and invasive growth. Oncogene 19, 1764-71.
Kohler, G., Milstein, C. 1975. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495-7.
Laherty, C.D., Hu, H.M., Opipari, A.W., Wang, F., Dixit, V.M. 1992. The Epstein-Barr virus LMP1 gene product induces A20 zinc finger protein expression by activating nuclear factor kappa B. J Biol Chem 267, 24157-60.
Li, H.P., Chang, Y.S. 2003. Epstein-Barr virus latent membrane protein 1: structure and functions. J Biomed Sci 10, 490-504.
Li, X.P., Li, G., Peng, Y., Kung, H.F., Lin, M.C. 2004. Suppression of Epstein-Barr virus-encoded latent membrane protein-1 by RNA interference inhibits the metastatic potential of nasopharyngeal carcinoma cells. Biochem Biophys Res Commun 315, 212-8.
Liebowitz, D. 1994. Nasopharyngeal carcinoma: the Epstein-Barr virus association. Semin Oncol 21, 376-81.
Liebowitz, D., Kopan, R., Fuchs, E., Sample, J., Kieff, E. 1987. An Epstein-Barr virus transforming protein associates with vimentin in lymphocytes. Mol Cell Biol 7, 2299-308.
Liu, Q.Y., Summers, W.C. 1989. Novel 12-O-tetradecanoylphorbol-13-acetate-responsive elements in the upstream sequence of the MS gene promoter of Epstein-Barr virus. J Virol 63, 5062-8.
Lones, M.A., Shintaku, I.P., Weiss, L.M., Thung, S.N., Nichols, W.S., Geller, S.A. 1997. Posttransplant lymphoproliferative disorder in liver allograft biopsies: a comparison of three methods for the demonstration of Epstein-Barr virus. Hum Pathol 28, 533-9.
Macsween, K.F., Crawford, D.H. 2003. Epstein-Barr virus-recent advances. Lancet Infect Dis 3, 131-40.
Mann, K.P., Thorley-Lawson, D. 1987. Posttranslational processing of the Epstein-Barr virus-encoded p63/LMP protein. J Virol 61, 2100-8.
McCafferty, J., Griffiths, A.D., Winter, G., Chiswell, D.J. 1990. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348, 552-4.
Miller, W.E., Earp, H.S., Raab-Traub, N. 1995. The Epstein-Barr virus latent membrane protein 1 induces expression of the epidermal growth factor receptor. J Virol 69, 4390-8.
Mitchell, T., Sugden, B. 1995. Stimulation of NF-kappa B-mediated transcription by mutant derivatives of the latent membrane protein of Epstein-Barr virus. J Virol 69, 2968-76.
Mosialos, G., Birkenbach, M., Yalamanchili, R., VanArsdale, T., Ware, C., Kieff, E. 1995. The Epstein-Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family. Cell 80, 389-99.
Ohage, E., Steipe, B. 1999. Intrabody construction and expression. I. The critical role of VL domain stability. J Mol Biol 291, 1119-28.
Proba, K., Worn, A., Honegger, A., Pluckthun, A. 1998. Antibody scFv fragments without disulfide bonds made by molecular evolution. J Mol Biol 275, 245-53.
Richison, A.B., Kieff, E. (1996). Epstein-Barr virus. Fields' Virology. D. M. K. B.N. Fields, P.M. Howley, R.M. Chanock, J.L. Melnick, T.P. Monath, B. Roizman, S.E. Straus, Lippincott-Raven Publishers. 2.
Rondon, I.J., Marasco, W.A. 1997. Intracellular antibodies (intrabodies) for gene therapy of infectious diseases. Annu Rev Microbiol 51, 257-83.
Sims, R.J., 3rd, Liss, A.S., Gottlieb, P.D. 2003. Normalization of luciferase reporter assays under conditions that alter internal controls. Biotechniques 34, 938-40.
Tavladoraki, P., Benvenuto, E., Trinca, S., De Martinis, D., Cattaneo, A., Galeffi, P. 1993. Transgenic plants expressing a functional single-chain Fv antibody are specifically protected from virus attack. Nature 366, 469-72.
Tsai, C.N., Tsai, C.L., Tse, K.P., Chang, H.Y., Chang, Y.S. 2002. The Epstein-Barr virus oncogene product, latent membrane protein 1, induces the downregulation of E-cadherin gene expression via activation of DNA methyltransferases. Proc Natl Acad Sci U S A 99, 10084-9.
Uchida, J., Yasui, T., Takaoka-Shichijo, Y., Muraoka, M., Kulwichit, W., Raab-Traub, N., Kikutani, H. 1999. Mimicry of CD40 signals by Epstein-Barr virus LMP1 in B lymphocyte responses. Science 286, 300-3.
Wang, D., Liebowitz, D., Kieff, E. 1988. The truncated form of the Epstein-Barr virus latent-infection membrane protein expressed in virus replication does not transform rodent fibroblasts. J Virol 62, 2337-46.
Wang, S., Rowe, M., Lundgren, E. 1996. Expression of the Epstein Barr virus transforming protein LMP1 causes a rapid and transient stimulation of the Bcl-2 homologue Mcl-1 levels in B-cell lines. Cancer Res 56, 4610-3.
Wilson, J.B., Weinberg, W., Johnson, R., Yuspa, S., Levine, A.J. 1990. Expression of the BNLF-1 oncogene of Epstein-Barr virus in the skin of transgenic mice induces hyperplasia and aberrant expression of keratin 6. Cell 61, 1315-27.
Wirtz, P., Steipe, B. 1999. Intrabody construction and expression III: engineering hyperstable V(H) domains. Protein Sci 8, 2245-50.
Worn, A., Pluckthun, A. 1998. Mutual stabilization of VL and VH in single-chain antibody fragments, investigated with mutants engineered for stability. Biochemistry 37, 13120-7.
Wutzler, P., Farber, I., Sauerbrei, A., Helbig, B., Wutke, K., Rudiger, K.D., Scheibner, K., Brichacek, B., Vonka, V. 1986. Demonstration of Epstein-Barr virus in malignant non-Hodgkin's lymphomas. Oncology 43, 224-9.
Yang, X., Sham, J.S., Ng, M.H., Tsao, S.W., Zhang, D., Lowe, S.W., Cao, L. 2000. LMP1 of Epstein-Barr virus induces proliferation of primary mouse embryonic fibroblasts and cooperatively transforms the cells with a p16-insensitive CDK4 oncogene. J Virol 74, 883-91.
Young, L.S., Dawson, C.W., Clark, D., Rupani, H., Busson, P., Tursz, T., Johnson, A., Rickinson, A.B. 1988. Epstein-Barr virus gene expression in nasopharyngeal carcinoma. J Gen Virol 69 ( Pt 5), 1051-65.
Yu, M.C., Mo, C.C., Chong, W.X., Yeh, F.S., Henderson, B.E. 1988. Preserved foods and nasopharyngeal carcinoma: a case-control study in Guangxi, China. Cancer Res 48, 1954-9.