研究生: |
陳栩輝 Chen, Hsu-Hui |
---|---|
論文名稱: |
Ni/Pb-Sn-Se及Co/Pb-Sn-Se系統的界面反應與相平衡 Interfacial reactions and phase equilibria of Ni/Pb-Sn-Se and Co/Pb-Sn-Se |
指導教授: |
陳信文
Chen, Sinn-Wen |
口試委員: |
吳子嘉
林士剛 廖建能 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 143 |
中文關鍵詞: | 界面反應 、相平衡 |
外文關鍵詞: | SnSe2 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
能源轉換的過程中,逸散到大氣的熱能若能被回收再利用可以有效的提高有限能源的使用率。而熱電材料由於其能夠將熱能與電能直接轉換,因此造成前仆後繼的研究與探討。然而其模組中的接點問題一直是穩定性的一大隱憂,合適的阻障層可以延長其使用的壽命,因此若能了解阻障層與熱電材料之間的界面反應,便可透過擴散的機制來設計出合適的阻障層。透過相關元素的相平衡研究可以更快釐清其元素交互作用的熱力學性質。
SnSe2以及Pb1-xSnxSe是具潛力的熱電材料,Ni和Co是常用的阻障層。本研究將探討Ni和Co阻障層與SnSe2以及Pb1-xSnxSe之界面反應,並了解其界面成長機制,與相關的相平衡研究。本研究利用電鍍的方式將阻障層鍍於基材上。隨後將反應偶試樣真空封入石英管後,放入500℃、300℃以及200℃的高溫爐中進行界面反應,而相平衡實驗則是以些許合金點配製並平衡多個月的結果。
研究結果顯示阻障層(Ni)與熱電材料(SnSe2)反應偶在500℃的反應溫度下會生成三層界面反應層分別為三相(Ni5.62SnSe2+NiSe+Ni3Sn2)、兩相(Ni3Sn2+NiSe)以及兩相(NiSe+SnSe)。而300℃系統的結果較500℃系統多了一層反應層,其反應的生成相為三相(Ni5.62SnSe2+NiSe+Ni3Sn2)、兩相(Ni3Sn2+NiSe)、兩相(NiSnSe+NiSe)以及兩相(NiSe+SnSe)。而200℃的反應也有相似的結果,但其中的最後一層界面反應層認為是Ni-26at%Sn-50at%Se介金屬化合物。
因SnSe2的特殊結構使得SnSe2¬相變為SnSe時會整層材料相變,因此在反應偶下側可以發現相變後具有不規則孔洞結構的SnSe。其相轉變機制為(SnSe2→SnSe+Se(liquid))。因Se元素的蒸氣壓大,Se(liquid)容易產生氣相的Se(gas),氣相的Se(gas)再與Ni反應為NiSe相。
在500℃ Co/SnSe2的系統中,界面處的生成相為CoSe與SnSe。然而在300℃與200℃系統中,界面處的兩層反應層分別為兩相(CoSe+SnSe)以及SnSe。在高溫系統中(500℃)SnSe的形貌含有不規則的孔洞,然而在低溫系統中(300℃與200℃),因Co+Se→CoSe的反應速率下降,生成的SnSe則沒有孔洞。
500℃ (Co,Ni)/SnSe2系統中,擴散速率Ni>Se>Co,其生成相分別為(Co,Ni)3Se2、兩相((Co,Ni)Se+Ni3Sn2)、兩相(NiSe+SnSe)。而200℃ 的(Co,Ni)/SnSe2反應偶有些許的不同,最靠近SnSe2的生成相為Ni-26at%Sn-50at%Se介金屬化合物,其擴散路徑為(Co,Ni)/ Ni3Sn2/(Co,Ni)Se/SnSe/(Ni-26at%Sn-50%Se)介金屬/SnSe2。
阻障層(Ni)與熱電材料(Pb1-xSnxSe)反應偶在500℃反應下,有兩層界面反應層,其生成相為兩相(Ni5.62SnSe2+ Ni¬3Pb2Se2)以及三相(Ni5.62SnSe2+Pb1-xSnxSe+Ni-Sn compound),而第二層中Pb1-xSnxSe在反應後的Sn含量會有遞減的情形發生。在阻障層(Co)與熱電材料(Pb1-xSnxSe)的反應偶中沒有發現有界面生成相,因此(Co,Ni)系統中也只有Ni進行反應,故其擴散路徑與Ni系統相同。
In the energy conversion process, if the heat energy leaked into the atmosphere can be recycled, the utilization rate of the energy can be improved. Thermoelectric materials can directly convert the heat into electrical energy, so it has attracted widespread attention. However, the contact problem in the module has always been a major concern for the stability. A suitable barrier layer can extend its lifespan. Therefore, if the interfacial reaction between the barrier layer and the thermoelectric material can be well understood, a suitable barrier layer can be designed. Furthermore, phase equilibrium is an useful information for understanding the thermodynamic properties of all the elements.
SnSe2 and Pb1-xSnxSe are potential thermoelectric materials, and Ni and Co are commonly used to be the barrier layers. This research aims to understand the interface diffusion mechanism between barrier layers (NiandCo) and thermoelectric materials (SnSe2 and Pb1-xSnxSe). In this experiment, Nickel and Cobalt are electroplated on the SnSe2 and Pb1-xSnxSe. The reaction couple is vacuum sealed in a quartz tube and placed in a high-temperature furnace set as 500°C and 300°C. The isothermal phase diagram of Ni-Sn-Se at 500°C and 300°C are determined by the homogeneous sample annealed for several months.
The results show that the Ni/SnSe2 couple at 500°C form the three reaction layers which are Ni5.62SnSe2+NiSe+Ni3Sn2(three phases), Ni3Sn2+NiSe(two phases), and NiSe+SnSe(two phases), respectively. The result of the 300°C system has one more reaction layer than that of the 500°C system. Ni/SnSe2 couple at 200°C also has similar results, but the reaction layer closed to SnSe2 is considered to be a Ni-26at%Sn-50at%Se intermetallic compound.
Due to the anisotropic property of SnSe2, the entire layer of material will undergo a phase change when SnSe2 is transformed into SnSe. Therefore, SnSe with the irregular pores can be found on the lower side of the reaction couple. Thus, the phase transition mechanism is (SnSe2→SnSe+Se(liquid)). Due to the high vapor pressure of the Se element, Se (liquid) tends to produce Se (gas). The Se(gas) will easily react with Ni to form the NiSe phase.
In the 500°C Co/SnSe2 system, the formation phases at the interface are CoSe and SnSe. However, in 300°C and 200°C systems, the two reaction layers at the interface are CoSe+SnSe(two phases)and SnSe. The morphology of SnSe in the high temperature system (500°C) contains irregular pores, but in the low temperature system (300°C and 200°C), the SnSe has no pores due to the lower reaction rate of Co+Se→CoSe. In the 500℃ (Co,Ni)/SnSe2 system, the diffusion rate is considered as Ni>Se>Co. The formation phases are (Co,Ni)3Se2, (Co,Ni)Se+Ni3Sn2(two pahses), NiSe+SnSe(two-phase). The (Co,Ni)/SnSe2 reaction at 200℃ is occasionally slightly different. The reaction layers closed to SnSe2 is Ni-26at%Sn-50at%Se intermetallic compound. Its diffusion path is (Co,Ni)/Ni3Sn2/(Co,Ni)Se/SnSe/(Ni-26at%Sn-50%Se)intermetallic compound/SnSe2.
The Ni/Pb1-xSnxSe at 500℃ has two interfacial reaction layers. The formation phases are Ni5.62SnSe2+Ni3Pb2Se2 (two phases) and Ni5.62SnSe2 +Pb1-xSnxSe+Ni-Sn compound (three phases). The Sn content of Pb1-xSnxSe in the second reaction layer will be lower in the left part than in the right part after the reaction. Furthermore, no interfacial reaction was found in the Co/Pb1-xSnxSe. Therefore, in the (Co, Ni) system only Ni is reactive.
[1] "Laboratory. Estimated U. S. Energy Consumption," ed, 2019.
[2] A. F. Musa and S.-w. Chen, "Interfacial Reactions in Ni/Se-Sn, Ni/Se-Te, Ni/Sn-Te and Ni/Se-Sn-Te Couples", Journal of Electronic Materials, pp. 1-12, (2021).
[3] T. M. Tritt, "Thermoelectric materials: Principles, structure, properties, and applications", (2002).
[4] E. Altenkirch, "“About the Efficiency of the Thermal Columns", Physikalische Zeitschrift, Vol. 10(16), pp. 560-580, (1909).
[5] J. T. Jarman, E. E. Khalil, and E. Khalaf, "Energy analyses of thermoelectric renewable energy sources", Open Journal of Energy Efficiency, (2013).
[6] G. Chen, M. Dresselhaus, G. Dresselhaus, J.-P. Fleurial, and T. Caillat, "Recent developments in thermoelectric materials", International materials reviews, Vol. 48(1), pp. 45-66, (2003).
[7] T. M. Tritt, H. Böttner, and L. Chen, "Thermoelectrics: Direct solar thermal energy conversion", MRS bulletin, Vol. 33(4), pp. 366-368, (2008).
[8] M. S. El-Genk, H. H. Saber, and T. Caillat, "Efficient segmented thermoelectric unicouples for space power applications", Energy Conversion Management, Vol. 44(11), pp. 1755-1772, (2003).
[9] A. Minnich, M. S. Dresselhaus, Z. Ren, and G. Chen, "Bulk nanostructured thermoelectric materials: current research and future prospects", Energy Environmental Science, Vol. 2(5), pp. 466-479, (2009).
[10] A. F. Ioffe, L. Stil'Bans, E. Iordanishvili, T. Stavitskaya, A. Gelbtuch, and G. Vineyard, "Semiconductor thermoelements and thermoelectric cooling", PhT, Vol. 12(5), p. 42, (1959).
[11] G. J. Snyder and E. S. Toberer, "Complex thermoelectric materials", Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, pp. 101-110, (2011).
[12] H. Keller, "Solder connections with a Ni barrier", IEEE Transactions on Components, Hybrids, Manufacturing Technology, Vol. 9(4), pp. 433-439, (1986).
[13] S. Fujimoto, S. Sano, and T. Kajitani, "Analysis of diffusion mechanism of Cu in polycrystalline Bi2Te3-based alloy with the aging of electrical conductivity", Japanese Journal of Applied Physics, Vol. 46(8R), p. 5033, (2007).
[14] R. Carlson, "Anisotropic diffusion of copper into bismuth telluride", Journal of Physics Chemistry of Solids, Vol. 13(1-2), pp. 65-70, (1960).
[15] I. Gasenkova and T. Svechnikova, "Structural and transport properties of Sn-doped Bi 2 Te 3–x Se x single crystals", Inorganic materials, Vol. 40(6), pp. 570-575, (2004).
[16] D. Parker and D. J. Singh, "Potential thermoelectric performance from optimization of hole-doped Bi 2 Se 3", Physical Review X, Vol. 1(2), p. 021005, (2011).
[17] X. Yan, B. Poudel, Y. Ma, W. Liu, G. Joshi, H. Wang, Y. Lan, D. Wang, G. Chen, and Z. Ren, "Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2. 7Se0. 3", Nano letters, Vol. 10(9), pp. 3373-3378, (2010).
[18] X. Tang, W. Xie, H. Li, W. Zhao, Q. Zhang, and M. Niino, "Preparation and thermoelectric transport properties of high-performance p-type Bi 2 Te 3 with layered nanostructure", Applied physics letters, Vol. 90(1), p. 012102, (2007).
[19] L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, "Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals", Nature, Vol. 508(7496), pp. 373-377, (2014).
[20] Q. Tan, L.-D. Zhao, J.-F. Li, C.-F. Wu, T.-R. Wei, Z.-B. Xing, and M. G. Kanatzidis, "Thermoelectrics with earth abundant elements: low thermal conductivity and high thermopower in doped SnS", Journal of Materials Chemistry A, Vol. 2(41), pp. 17302-17306, (2014).
[21] J. M. Skelton, S. C. Parker, A. Togo, I. Tanaka, and A. Walsh, "Thermal physics of the lead chalcogenides PbS, PbSe, and PbTe from first principles", Physical Review B, Vol. 89(20), p. 205203, (2014).
[22] H. Wang, "Y. Z. Pei, AD LaLonde, and GJ Snyder", Advanced Materials, Vol. 23(p. 1366, (2011).
[23] M. Lee, L. Viciu, L. Li, Y. Wang, M. Foo, and S. Watauchi, "RAP Jr, RJ Cava, and NP Ong", Nat. Mater, Vol. 5(p. 537, (2006).
[24] I. Terasaki, Y. Sasago, and K. Uchinokura, "Large thermoelectric power in NaCo 2 O 4 single crystals", Physical Review B, Vol. 56(20), p. R12685, (1997).
[25] A. Maignan, E. Guilmeau, F. Gascoin, Y. Bréard, and V. Hardy, "Revisiting some chalcogenides for thermoelectricity", Science technology of advanced materials, Vol. 13(5), p. 053003, (2012).
[26] J. Carrete, N. Mingo, and S. Curtarolo, "Low thermal conductivity and triaxial phononic anisotropy of SnSe", Applied Physics Letters, Vol. 105(10), p. 101907, (2014).
[27] S. Hébert, W. Kobayashi, H. Muguerra, Y. Bréard, N. Raghavendra, F. Gascoin, E. Guilmeau, and A. Maignan, "From oxides to selenides and sulfides: The richness of the CdI2 type crystallographic structure for thermoelectric properties", physica status solidi, Vol. 210(1), pp. 69-81, (2013).
[28] X. Huang, Z. Zeng, and H. Zhang, "Metal dichalcogenide nanosheets: preparation, properties and applications", Chemical Society Reviews, Vol. 42(5), pp. 1934-1946, (2013).
[29] C. Lee, J. Hong, M.-H. Whangbo, and J. H. Shim, "Enhancing the thermoelectric properties of layered transition-metal dichalcogenides 2H-MQ2 (M= Mo, W; Q= S, Se, Te) by layer mixing: Density functional investigation", Chemistry of Materials, Vol. 25(18), pp. 3745-3752, (2013).
[30] A. Kuranov, V. Pleshchev, A. Titov, N. Baranov, and L. Krasavin, "The effect of intercalation by 3d elements on the structure and physical properties of titanium diselenide M x TiSe 2 (M= Cr, Fe, Co)", Physics of the Solid State, Vol. 42(11), pp. 2089-2092, (2000).
[31] B.-Z. Sun, Z. Ma, C. He, and K. Wu, "Anisotropic thermoelectric properties of layered compounds in SnX 2 (X= S, Se): a promising thermoelectric material", Physical Chemistry Chemical Physics, Vol. 17(44), pp. 29844-29853, (2015).
[32] M. Liu, J. Zhang, J. Xu, B. Hu, B. Liu, K. Sun, Y. Yang, J. Wang, and B. Du, "Phase structure, phase transition and thermoelectric properties of pristine and Br doped SnSe2", Journal of Solid State Chemistry, Vol. 289(p. 121468, (2020).
[33] C.-F. Wu, T.-R. Wei, and J.-F. Li, "Electrical and thermal transport properties of Pb 1− x Sn x Se solid solution thermoelectric materials", Physical Chemistry Chemical Physics, Vol. 17(19), pp. 13006-13012, (2015).
[34] F. Van Loo, "Multiphase diffusion in binary and ternary solid-state systems", Progress in Solid State Chemistry, Vol. 20(1), pp. 47-99, (1990).
[35] J. B. Clark, "Transactions of the America Institute of Mining, Metallurgical and Petroleum Engineers", Vol. 227(5)(pp. 1250-1251, (1963).
[36] P. Nash, "The Ni− Pb (Nickel-Lead) system", Bulletin of Alloy Phase Diagrams, Vol. 8(3), pp. 264-268, (1987).
[37] S. Bader, W. Gust, and H. Hieber, "Rapid formation of intermetallic compounds interdiffusion in the Cu Sn and Ni Sn systems", Acta metallurgica et materialia, Vol. 43(1), pp. 329-337, (1995).
[38] S.-w. Chen, Z.-w. Liu, H.-s. Chu, and Z.-y. Huang, "Interfacial reactions between Ni and Bi2 (Se0. 1Te0. 9) 3 and its constituent material systems", Journal of Alloys Compounds, Vol. 731(pp. 111-117, (2018).
[39] P. Nielsen and J. J. Ritsko, "Reactive diffusion and electronic structure at the nickel/selenium interface", Journal of Applied Physics, Vol. 49(2), pp. 632-639, (1978).
[40] H.-Y. Chen and C. Chen, "Interfacial reaction between eutectic Sn-Pb solder and electroplated-Ni as well as electroless-Ni metallization during reflow", Journal of electronic materials, Vol. 38(2), pp. 338-344, (2009).
[41] P. Kim, J. Jang, T. Lee, and K.-N. Tu, "Interfacial reaction and wetting behavior in eutectic SnPb solder on Ni/Ti thin films and Ni foils", Journal of Applied Physics, Vol. 86(12), pp. 6746-6751, (1999).
[42] A. F. Musa and S.-W. Chen, "Interfacial Reactions in Ni/PbSe", Journal of Electronic Materials, Vol. 49(10), pp. 6068-6072, (2020).
[43] Y. Kim, G. Yoon, B. J. Cho, and S. H. Park, "Multi-layer metallization structure development for highly efficient polycrystalline SnSe thermoelectric devices", Applied Sciences, Vol. 7(11), p. 1116, (2017).
[44] C.-h. Wang and S.-w. Chen, "Sn/Co solid/solid interfacial reactions", Intermetallics, Vol. 16(4), pp. 524-530, (2008).
[45] C.-h. Wang and C.-y. Kuo, "Interfacial reactions between eutectic Sn–Pb solder and Co substrate", Journal of Materials Science, Vol. 46(8), pp. 2654-2661, (2011).
[46] I. Kainulainen, P. Taskinen, and J. Gisby, "A thermodynamic assessment of the nickel–lead system", Calphad, Vol. 34(4), pp. 441-445, (2010).
[47] C. Schmetterer, H. Flandorfer, K. W. Richter, U. Saeed, M. Kauffman, P. Roussel, and H. Ipser, "A new investigation of the system Ni–Sn", Intermetallics, Vol. 15(7), pp. 869-884, (2007).
[48] H. Okamoto and T. Massalski, "Binary alloy phase diagrams", ASM International, Materials Park, OH, USA, pp. 2857-2859, (1990).
[49] H. Ohtani, K. Okuda, and K. Ishida, "Thermodynamic study of phase equilibria in the Pb-Sn-Sb system", Journal of phase equilibria, Vol. 16(5), pp. 416-429, (1995).
[50] J. Lin, R. Sharma, and Y. Chang, "The Pb-Se (lead-selenium) system", Journal of phase equilibria, Vol. 17(3), pp. 253-260, (1996).
[51] Y. Liu, Z. Kang, G. Sheng, L. Zhang, J. Wang, and Z. Long, "Phase Equilibria and Thermodynamic Basis for the Cd-Se and Pb-Se Binary Systems", Journal of electronic materials, Vol. 41(7), pp. 1915-1923, (2012).
[52] R. Sharma and Y. Chang, "The Se− Sn (selenium-tin) system", Bulletin of alloy phase diagrams, Vol. 7(1), pp. 68-72, (1986).
[53] G. Ghosh, "Thermodynamic modeling of the nickel-lead-tin system", Metallurgical Materials Transactions A, Vol. 30(6), pp. 1481-1494, (1999).
[54] A. Baranov, A. Isaeva, B. Popovkin, and R. Shpanchenko, "Crystal structure and thermal stability of Ni151. 5Pb24S92. Search for selenium-and tellurium-containing analogs", Russian chemical bulletin, Vol. 51(12), pp. 2139-2144, (2002).
[55] A. Baranov, A. Isaeva, L. Kloo, V. Kulbachinskii, R. Lunin, V. Nikiforov, and B. Popovkin, "2D metal slabs in new nickel–tin chalcogenides Ni7− δSnQ2 (QSe, Te): average crystal and electronic structures, chemical bonding and physical properties", Journal of Solid State Chemistry, Vol. 177(10), pp. 3616-3625, (2004).
[56] S. Dal Corso, B. Liautard, and J. Tedenac, "The Pb-Sn-Se system: Phase equilibria and reactions in the PbSe-SnSe-Se subternary", Journal of phase equilibria, Vol. 16(4), pp. 308-314, (1995).
[57] R. J. Korkosz, T. C. Chasapis, S.-h. Lo, J. W. Doak, Y. J. Kim, C.-I. Wu, E. Hatzikraniotis, T. P. Hogan, D. N. Seidman, and C. Wolverton, "High ZT in p-Type (PbTe) 1–2 x (PbSe) x (PbS) x Thermoelectric Materials", Journal of the American Chemical Society, Vol. 136(8), pp. 3225-3237, (2014).
[58] S.-W. Chen and T.-Y. Huang, "Exprrimental determination and Calphad calculation of phase diagram of phase diagram of thermoelectric Ag-Pb-Sn-Te quaternary system", in preparation for publication, (2019.).
[59] D. Stevenson and J. Wulff, "Liquid-solid phase distribution studies in the systems iron-lead, cobalt-lead, chromium-tin, and nickel-silver", Transactions of the Metallurgical Society of AIME, Vol. 221(2), pp. 271-275, (1961).
[60] H. Schenk, M. Frohberg, and H. Heinemann, "Untersuchungen Zur Stickstoffaufnahme in flüssigen Eisenlegierungen im Druckbereich bis zu vier Atmosphären", Archiv für das Eisenhüttenwesen, Vol. 33(9), (1962).
[61] T. Massalski and H. Okamoto, "PR Subramanian, and L", Binary Alloy Phase Diagrams, Second edition, ASM International, Materials Park, OH, pp. 1220-1221 (1990).
[62] H. Okamoto, "Co-Sn (Cobalt-Tin)", Journal of Phase Equilibria Diffusion, Vol. 27(3), p. 308, (2006).
[63] M. Jiang, J. Sato, I. Ohnuma, R. Kainuma, and K. Ishida, "A thermodynamic assessment of the Co–Sn system", Calphad, Vol. 28(2), pp. 213-220, (2004).
[64] U. Haschimoto, "The Effect of Various Elements on the Alpha", Beta Allotropic Transformation Point of Cobalt, Nippon Kinzoku Gakkaishi, Vol. 2(2), pp. 67-77, (1938).
[65] K. Komarek and K. Wessely, "Übergangsmetall-Chalkogensysteme, 1. Mitt.: Das System Kobalt-Selen", Monatshefte für Chemie/Chemical Monthly, Vol. 103(3), pp. 896-906, (1972).
[66] F. BlZlHM, F. GRflNVOLD, and H. HARALDSEN, "X-ray and magnetic study of the system cobalt selenium", Acta Chem. Scand, Vol. 9(9), (1955).
[67] G. Chattopadhyay, M. Chandrasekharaiah, and M. Karkhanavala, "Thermodynamic stability of the γ-Co 1− x Se phase by CaF 2 electrolyte galvanic cell method", Monatshefte für Chemie-Chemical Monthly, Vol. 109(6), pp. 1349-1363, (1978).
[68] C.-h. Wang, C.-y. Kuo, and N.-c. Yang, "Phase equilibria of the ternary Sn-Pb-Co system at 250 C and interfacial reactions of Co with Sn-Pb alloys", Journal of Electronic Materials, Vol. 44(11), pp. 4567-4575, (2015).
[69] A.-T. Pham, T. H. Vu, C. Cheng, T. L. Trinh, J.-E. Lee, H. Ryu, C. Hwang, S.-K. Mo, J. Kim, and L.-d. Zhao, "High-Quality SnSe2 Single Crystals: Electronic and Thermoelectric Properties", ACS Applied Energy Materials, Vol. 3(11), pp. 10787-10792, (2020).