研究生: |
陳健民 Chen, Chien-Ming |
---|---|
論文名稱: |
在異質網路下獵能收發器之安全性波束成型和人工雜訊設計 Secure Beamforming Design in Multi-Cell Heterogeneous Network with Simultaneous Wireless Information and Power Transfer and Artificial Noise |
指導教授: |
林澤
Lin, Che |
口試委員: |
洪樂文
Hong, Yao-Win 蘇炫榮 Su, Hsuan-Jung 吳卓諭 Wu, Jwo-Yuh |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 50 |
中文關鍵詞: | 保密傳輸效率 、人工雜訊 、同時提供無線信息和電力傳輸 、異質網路 、凸優化函數 |
外文關鍵詞: | secrecy rate, artificial noise, simultaneous wireless information and power transfer, heterogeneous cellular network, convex optimization |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在此研究中,我們考慮一個異質網路(heterogeneous network),其中包含一個宏單位基地站 (macrocell) 和數個毫微單位基地站 (femtocell)。在每個毫微單位基地站中,存在接收訊號的使用者、只接收能量的潛在竊聽者、與竊取訊號的竊聽者。接收訊號的使用者,具有分配功率 (Power splitting) 之獵能 (Energy harvesting) 功能。與此同時,所有毫微單位基地台也對宏單位基地站裡的使用者造成干擾。在本篇論文我們將分為兩大部分進行探討─ 完整通道資訊 (perfect CSI) 與部分通道資訊(partial channel state information) 。在已知所有接收者的完整通道資訊下,我們致力於保密傳輸效率(secrecy rate) 的最大化,並且同時最佳化波束成型向量和功率分配參數。在只知道接收者的部分通道資訊下,我們致力於保障訊號安全性,並最大化系統效能。此共同優化涉及複雜且非凸特性的限制條件,為解決此問題,我們提出一個連續凸化近似演算法以得到高精準度的近似解。我們的模擬結果顯示此演算法在這兩個不同的通道資訊假設下均能達到傑出的效能表現。在完整通道資訊的假設中,我們的演算法比最大比率傳輸 (MRT)和沒有人工雜訊的波束成型設計相比,分別提高了420.8% 和37.3% 的效能表現。而在部分通道資訊的假設下,我們的演算法比最大比率傳輸和以沒有人工雜訊的波束成型設計相比,分別提高63% 和16% 的效能表現。這也凸顯在以安全性為主的波束成型設計於下世代的無線通訊系統中的重要性。
In this paper, we consider a heterogeneous cellular network (HCN) with a macrocell and multiple femtocells. In each femtocell, the femto base station (FBS) serves a femto user (FU), multiple potential eavesdroppers, and multiple eavesdroppers. FU is capable of simultaneous wireless information and power transfer (SWIPT) energy harvesting (EH) in a power splitting manner. All FBSs suppress their interference to macro users (MUs) via a interference power constraint. In this paper, we considered both cases of channel state information (CSI): perfect CSI and partial CSI at transmitter. For the perfect CSI case, we consider the beamforming and artificial noise design that maximize the secrecy rate. For the partial CSI case, we study the design of a resource allocation algorithm maximizing the transmission rate for the case when the legitimate receivers are able to harvest energy from radio frequency signals while ensuring signal security. The non-convex objective functions and constraints make the problem difficult to solve. To resolve this
problem, we proposed successive convex approximation (SCA) algorithms that provide high-quality approximate solutions. Simulations demonstrated that our proposed algorithm achieve
near-optimal performance for both the perfect CSI and partial
CSI cases. For perfect CSI case, our proposed algorithms improves secrecy rate by 37.3% and 420.8% over beamforming design without artificial noise scheme and MRT scheme, respectively. For partial CSI case, our proposed algorithms improves transmission rate by 63% and 16% over beamforming design without artificial noise scheme and MRT scheme, respectively. It also indicates the importance of artificial noise design in the physical layer security with SWIPT.
[1] T. S. Rappaport, Y. Xing, G. R. MacCartney, A. F. Molisch, E. Mellios, and J. Zhang, “Overview of Millimeter Wave Communications for Fifth-Generation (5g) Wireless Networks—With a Focus on Propagation Models,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 12, pp. 6213–6230, Dec. 2017.
[2] W. Xia, J. Zhang, S. Jin, C.-K. Wen, F. Gao, and H. Zhu, “Large System Analysis of Resource Allocation in Heterogeneous Networks With Wireless Backhaul,” IEEE Transactions on Communications, vol. 65, no. 11, pp. 5040–5053, Nov. 2017.
[3] A. Ghosh, N. Mangalvedhe, R. Ratasuk, B. Mondal, M. Cudak, E. Visotsky, T. Thomas, J. Andrews, P. Xia, H. Jo, H. Dhillon, and T. Novlan, “Heterogeneous cellular networks: From theory to practice,” IEEE Communications Magazine, vol. 50, no. 6, pp. 54–64, Jun. 2012.
[4] R. Q. Hu and Yi Qian, “An energy efficient and spectrum efficient wireless heterogeneous network framework for 5g systems,” IEEE Communications Magazine, vol. 52, no. 5, pp. 94–101, May 2014.
[5] A. Damnjanovic, J. Montojo, Y. Wei, T. Ji, T. Luo, M. Vajapeyam, T. Yoo, O. Song, and D. Malladi, “A survey on 3gpp heterogeneous networks,” IEEE Wireless Communications, vol. 18, no. 3, pp. 10–21, Jun. 2011.
[6] E. Hossain, M. Rasti, H. Tabassum, and A. Abdelnasser, “Evolution toward 5g multi-tier cellular wireless networks: An interference management perspective,” IEEE Wireless Communications, vol. 21, no. 3, pp. 118–127, Jun. 2014.
[7] C. Xu, M. Sheng, X. Wang, C.-X. Wang, and J. Li, “Distributed Subchannel Allocation for Interference Mitigation in OFDMA Femtocells: A Utility-Based Learning Approach,” IEEE Transactions on Vehicular Technology, vol. 64, no. 6, pp. 2463–2475, Jun. 2015.
[8] R. F. Schaefer, H. Boche, and H. V. Poor, “Secure Communication Under Channel Uncertainty and Adversarial Attacks,” Proceedings of the IEEE, vol. 103, no. 10, pp. 1796–1813, Oct. 2015.
[9] W.-C. Liao, T.-H. Chang, W.-K. Ma, and C.-Y. Chi, “QoS-Based Transmit Beamforming in the Presence of Eavesdroppers: An Optimized Artificial-Noise-Aided Approach,” IEEE Transactions on Signal Processing, vol. 59, no. 3, pp. 1202–1216, Mar. 2011.
[10] D. W. K. Ng, E. S. Lo, and R. Schober, “Robust Beamforming for Secure Communication in Systems With Wireless Information and Power Transfer,” IEEE Transactions on Wireless Communications, vol. 13, no. 8, pp. 4599–4615, Aug. 2014.
[11] S. Goel and R. Negi, “Guaranteeing Secrecy using Artificial Noise,” IEEE Transactions on Wireless Communications, vol. 7, no. 6, pp. 2180–2189, Jun. 2008.
[12] D. W. K. Ng, E. S. Lo, and R. Schober, “Secure Resource Allocation and Scheduling for OFDMA
Decode-and-Forward Relay Networks,” IEEE Transactions on Wireless Communications, vol. 10,
no. 10, pp. 3528–3540, Oct. 2011.
[13] W. Mei, Z. Chen, J. Fang, and B. Fu, “Secure D2d-enabled cellular communication against selective
eavesdropping,” in Communications (ICC), 2017 IEEE International Conference on. IEEE,
2017, pp. 1–7.
[14] P. Zhao, M. Zhang, H. Yu, H. Luo, and W. Chen, “Robust Beamforming Design for Sum Secrecy Rate Optimization in MU-MISO Networks,” IEEE Transactions on Information Forensics and Security, vol. 10, no. 9, pp. 1812–1823, Sep. 2015.
[15] K. Cumanan, Z. Ding, M. Xu, and H. V. Poor, “Secrecy Rate Optimization for Secure Multicast Communications,” IEEE Journal of Selected Topics in Signal Processing, vol. 10, no. 8, pp. 1417–1432, Dec. 2016.
[16] D. W. K. Ng and R. Schober, “Resource allocation for secure communication in systems with wireless information and power transfer.” IEEE, Dec. 2013, pp. 1251–1257.
[17] D. W. K. Ng, Lin Xiang, and R. Schober, “Multi-objective beamforming for secure communication in systems with wireless information and power transfer.” IEEE, Sep. 2013, pp. 7–12.
[18] C. Song, C. Ling, J. Park, and B. Clerckx, “MIMO broadcasting for simultaneous wireless information and power transfer: Weighted MMSE approaches.” IEEE, Dec. 2014, pp. 1151–1156.
[19] D. W. K. Ng, E. S. Lo, and R. Schober, “Wireless Information and Power Transfer: Energy Efficiency Optimization in OFDMA Systems,” IEEE Transactions on Wireless Communications, vol. 12, no. 12, pp. 6352–6370, Dec. 2013.
[20] Q. Shi, L. Liu, W. Xu, and R. Zhang, “Joint Transmit Beamforming and Receive Power Splitting for MISO SWIPT Systems,” IEEE Transactions on Wireless Communications, vol. 13, no. 6, pp. 3269–3280, Jun. 2014.
[21] S. Timotheou, I. Krikidis, G. Zheng, and B. Ottersten, “Beamforming for MISO Interference Channels with QoS and RF Energy Transfer,” IEEE Transactions on Wireless Communications, vol. 13, no. 5, pp. 2646–2658, May 2014.
[22] M. Sheng, L. Wang, X. Wang, Y. Zhang, C. Xu, and J. Li, “Energy Efficient Beamforming in
MISO Heterogeneous Cellular Networks With Wireless Information and Power Transfer,” IEEE
Journal on Selected Areas in Communications, vol. 34, no. 4, pp. 954–968, Apr. 2016.
[23] J. Xiong, D. Ma, K.-K. Wong, and J. Wei, “Robust Masked Beamforming for MISO Cognitive Radio Networks With Unknown Eavesdroppers,” IEEE Transactions on Vehicular Technology, vol. 65, no. 2, pp. 744–755, Feb. 2016.
[24] Z. Chu, H. Xing, M. Johnston, and S. Le Goff, “Secrecy Rate Optimizations for a MISO Secrecy Channel with Multiple Multiantenna Eavesdroppers,” IEEE Transactions on Wireless Communications, vol. 15, no. 1, pp. 283–297, Jan. 2016.
[25] J. Choi, “A Robust Beamforming Approach to Guarantee Instantaneous Secrecy Rate,” IEEE Transactions on Wireless Communications, vol. 15, no. 2, pp. 1076–1085, Feb. 2016.
[26] A. A. Nasir, H. D. Tuan, T. Q. Duong, and H. V. Poor, “Secrecy rate beamforming for multi-cell
swipt networks,” in Globecom Workshops (GC Wkshps), 2016 IEEE. IEEE, 2016, pp. 1–5.
[27] M. Grant and S. Boyd, “CVX: Matlab Software for Disciplined Convex Programming, version 2.1,” May 2014. [Online]. Available: http://cvxr.com/cvx
[28] B. R. Marks and G. P. Wright, “Technical Note—A General Inner Approximation Algorithm for Nonconvex Mathematical Programs,” Operations Research, vol. 26, no. 4, pp. 681–683, Aug. 1978.
[29] A. Beck, A. Ben-Tal, and L. Tetruashvili, “A sequential parametric convex approximation method with applications to nonconvex truss topology design problems,” Journal of Global Optimization, vol. 47, no. 1, pp. 29–51, May 2010.