簡易檢索 / 詳目顯示

研究生: 洪欣茹
Hung, Shin-Ru.
論文名稱: 多連結基地台於第五代行動網路整合傳輸及回傳網路之資源分配
Resource Allocation for 5G IAB Networks with Multi-Connectivity
指導教授: 許健平
Sheu, Jang-Ping
口試委員: 陳裕賢
Chen, Yuh-Shyan
洪樂文
Hong, Yao-Win
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊系統與應用研究所
Institute of Information Systems and Applications
論文出版年: 2022
畢業學年度: 111
語文別: 英文
論文頁數: 41
中文關鍵詞: 整合傳輸以及回傳網路多連結通道品質多背包問題資源分配
外文關鍵詞: Integrated Access and Backhaul, Multi-Connectivity, Multiple Knapsack Problem
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本文中,我們探討在第五代行動網路整合傳輸及回傳網路(Integrated Access
    and Backhaul) 中下行傳輸的資源分配問題。為了提供更高的系統流量,我們採用多
    連結傳輸來增加傳輸彈性。基地台透過毫米波傳輸資料,然而毫米波容易因為堵塞
    而傳輸失敗,因此我們提出的模型會考慮該連結的堵塞機率。若系統決定服務使用
    者,則基地台必須分配足夠的資源塊,使資料能夠經由多跳路由傳至使用者,目標
    是最大化系統流量我們將問題轉換為分層多背包問題,並提出一個三階段的演算
    法。首先,給定使用者需求,我們通過考慮通道品質以及堵塞機率決定要服務的使
    用者。接下來,由於多連結的使用者資料可以透過多個已連結的基地台傳輸,我們
    需要決定資料如何分流。此兩步驟會不斷執行至沒有額外的資源塊能夠分配。最後
    我們收回分配給未完全服務的使用者的資源塊,並使用這些資源塊服務更多使用
    者。模擬結果顯示,我們所提出的演算法在系統流量方面優於候選演算法。


    This work examines the resource allocation for downlink transmission in the Integrated Access and Backhaul (IAB) networks with mmWave. To increase system throughput, we adopt multi-connectivity to increase transmission flexibility. Since mmWave is vulnerable to blockage, the transmission can fail if the link is blocked. Therefore, we consider the blockage probability of the link in our model. In our system, downlink traffic is transmitted hop-by-hop to the end user equipment (UE). Each UE has a service request, and the base station (BS) has to decide which UEs to satisfy. If a BS intends to serve a UE, it will reserve its physical resource blocks (PRBs) for downlink traffic. Our objective is to maximize the total throughput of the system. We modeled the problem as a hierarchical multiple-knapsack problem and proposed a three-phase algorithm. First, we decide the UEs served by the BS, considering channel quality and blockage probability. Next, we split the traffic of the multi-connected UEs to their associated BSs. These two steps will run iteratively until no PRBs can be allocated to UEs. Finally, we will check if the request of each UE is satisfied. If not, the BS will take back the allocated PRBs and try to serve other UEs with these PRBs. The simulation results show that the proposed algorithm outperforms the candidate algorithms in total throughput.

    1 Introduction 1 2 Related Work 4 2.1 Wireless Backhaul . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Multi-Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 Network Model 7 3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.2 Blockage Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.3 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.4 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4 Algorithm 15 4.1 Multiple Knapsack Assignment (MKA) . . . . . . . . . . . . . . . . . . . 16 4.2 Redundant Flow Removal (RFR) . . . . . . . . . . . . . . . . . . . . . . . 20 4.3 System Utility Improvement (SUI) . . . . . . . . . . . . . . . . . . . . . . 24 5 Simulation 27 5.1 Simulation Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.2.1 Varying Number of UEs . . . . . . . . . . . . . . . . . . . . . . . 29 5.2.2 Varying Number of SBSs . . . . . . . . . . . . . . . . . . . . . . . 30 5.2.3 Varying Number of SBSs in Tier Two . . . . . . . . . . . . . . . . 32 5.2.4 Varying Number of SBSs in Tier Three . . . . . . . . . . . . . . . 35 5.2.5 Varying Network Size . . . . . . . . . . . . . . . . . . . . . . . . 36 6 Conclusion 38

    [1] 3GPP, “NR; user equipment (UE) radio transmission and reception,” 3GPP, Technical
    Specification (TS) 38.101, Apr. 2020.
    [2] J. Y. Lai,W.-H.Wu, and Y. T. Su, “Resource allocation and node placement in multihop
    heterogeneous integrated-access-and-backhaul networks,” IEEE Access, vol. 8,
    pp. 122 937–122 958, 2020.
    [3] Y. Sadovaya, D. Moltchanov, H. Nikopour, et al., “Self-interference assessment and
    mitigation in 3GPP IAB deployments,” in IEEE International Conference on Communications
    (ICC), Montreal, QC, Canada, 2021, pp. 1–6.
    [4] L.Wang, H. Zhang, J. Qiao, X. Zhou, and D. Yuan, “Energy-delay aware user association
    in mmwave backhaul networks using matching theory,” in IEEE International
    Conference on Communications (ICC), Shanghai, China, 2019, pp. 1–6.
    [5] T. D. Tran, L. B. Le, T. T. Vu, and D. T. Ngo, “Stackelberg game-based network slicing
    for joint wireless access and backhaul resource allocation,” in IEEE International
    Conference on Communications (ICC), Shanghai, China, 2019, pp. 1–7.
    [6] M. D. Nguyen, L. Bao Le, and A. Girard, “Trajectory control and resource allocation
    for uav-based networks with wireless backhauls,” in IEEE International Conference
    on Communications (ICC), Montreal, QC, Canada, 2021, pp. 1–6.
    [7] 3GPP, “NR; integrated access and backhaul (IAB) radio transmission and reception,”
    3GPP, Technical Specification (TS) 38.174, Jul. 2019.
    [8] T. K. Vu, M. Bennis, M. Debbah, and M. Latva-Aho, “Joint path selection and rate allocation
    framework for 5G self-backhauled mm-wave networks,” IEEE Transactions
    on Wireless Communications, vol. 18, no. 4, pp. 2431–2445, 2019.
    [9] S. Ranjan, P. Chaporkar, P. Jha, and A. Karandikar, “Backhaul-aware cell selection
    policies in 5G IAB networks,” in IEEE Wireless Communications and Networking
    Conference (WCNC), Nanjing, China, 2021, pp. 1–6.
    [10] C. Saha, M. Afshang, and H. S. Dhillon, “Integrated mmwave access and backhaul
    in 5G: Bandwidth partitioning and downlink analysis,” in IEEE International Conference
    on Communications (ICC), Kansas City, MO, USA, 2018, pp. 1–6.
    [11] S. Zhang, X. Xu, M. Sun, X. Tao, and C. Liu, “Joint spectrum and power allocation
    in 5g integrated access and backhaul networks at mmwave band,” in Annual IEEE
    International Symposium on Personal, Indoor and Mobile Radio Communications
    (PIMRC), London, UK, 2020, pp. 1–7.
    [12] W. Lei, Y. Ye, and M. Xiao, “Deep reinforcement learning-based spectrum allocation
    in integrated access and backhaul networks,” IEEE Transactions on Cognitive
    Communications and Networking, vol. 6, no. 3, pp. 970–979, 2020.
    [13] I. Yadav, P. Chaporkar, P. Jha, and A. Karandikar, “Spectrum allocation in IAB networks:
    A hierarchical auction-based approach,” in Vehicular Technology Conference,
    Norman, OK, USA, 2021, pp. 1–5.
    [14] M. Pagin, T. Zugno, M. Polese, and M. Zorzi, “Resource management for 5G NR
    integrated access and backhaul: A semi-centralized approach,” IEEE Transactions
    on Wireless Communications, vol. 21, no. 2, pp. 753–767, 2022.
    [15] Y. Zhang, V. Ramamurthi, Z. Huang, and D. Ghosal, “Co-optimizing performance
    and fairness using weighted pf scheduling and iab-aware flow control,” in IEEEWireless
    Communications and Networking Conference (WCNC), Seoul, Korea (South),
    2020, pp. 1–6.
    [16] M. Gupta, A. Rao, E. Visotsky, A. Ghosh, and J. G. Andrews, “Learning link schedules
    in self-backhauled millimeter wave cellular networks,” IEEE Transactions on
    Wireless Communications, vol. 19, no. 12, pp. 8024–8038, 2020.
    [17] 3GPP, “NR; multi-connectivity; overall description,” 3GPP, Technical Specification
    (TS) 37.340, Apr. 2022.
    [18] B. Zhang, X. Xu, K. Zhang, et al., “Goodput-aware traffic splitting scheme with nonideal
    backhaul for 5G-LTE multi-connectivity,” in IEEE Wireless Communications
    and Networking Conference (WCNC), Marrakesh, Morocco, 2019, pp. 1–6.
    [19] J. Elias, F. Martignon, and S. Paris, “Optimal split bearer control and resource allocation
    for multi-connectivity in 5G new radio,” in Joint European Conference on
    Networks and Communications & 6G Summit (EuCNC/6G Summit), Porto, Portugal,
    2021, pp. 187–192.
    [20] T.-Y. Chen, C.-H. Wang, J.-P. Sheu, and D.-N. Yang, “Resource allocation for the
    4G and 5G dual-connectivity network with NOMA and NR,” in IEEE International
    Conference on Communications (ICC), Seoul, Korea (South), 2022.
    [21] K. Jin, X. Cai, J. Du, H. Park, and Z. Tang, “Toward energy efficient and balanced
    user associations and power allocations in multi-connectivity enabled mmwave networks,”
    IEEE Transactions on Green Communications and Networking, pp. 1–1,
    2022.
    [22] M. Di Renzo, “Stochastic geometry modeling and analysis of multi-tier millimeter
    wave cellular networks,” IEEE Transactions on Wireless Communications, vol. 14,
    no. 9, pp. 5038–5057, 2015.
    [23] G. R. MacCartney, T. S. Rappaport, and S. Rangan, “Rapid fading due to human
    blockage in pedestrian crowds at 5G millimeter-wave frequencies,” in IEEE Global
    Communications Conference (GLOBECOM), Singapore, 2017, pp. 1–7.
    [24] A. Wolf, P. Schulz, M. Dörpinghaus, J. C. S. Santos Filho, and G. Fettweis, “How
    reliable and capable is multi-connectivity?” IEEE Transactions on Communications,
    vol. 67, no. 2, pp. 1506–1520, 2019.
    [25] D. Kumar, J. Kaleva, and A. Tölli, “Blockage-aware reliable mmwave access via
    coordinated multi-point connectivity,” IEEE Transactions on Wireless Communications,
    vol. 20, no. 7, pp. 4238–4252, 2021.
    [26] M. Giordani, M. Mezzavilla, S. Rangan, and M. Zorzi, “An efficient uplink multiconnectivity
    scheme for 5G millimeter-wave control plane applications,” IEEE Transactions
    on Wireless Communications, vol. 17, no. 10, pp. 6806–6821, 2018.
    [27] M. Gapeyenko, V. Petrov, D. Moltchanov, et al., “On the degree of multi-connectivity
    in 5G millimeter-wave cellular urban deployments,” IEEE Transactions on Vehicular
    Technology, vol. 68, no. 2, pp. 1973–1978, 2019.
    [28] S. Sun, T. S. Rappaport, S. Rangan, et al., “Propagation path loss models for 5G
    urban micro- and macro-cellular scenarios,” in Vehicular Technology Conference,
    Nanjing, China, 2016, pp. 1–6.
    [29] M. Silvano and P. Toth, “Knapsack Problems: Algorithms and Computer Implementations.”
    Chichester: Wiley, 1990.

    QR CODE