簡易檢索 / 詳目顯示

研究生: 許芳華
Hsu, Fang Hua
論文名稱: 軟體定義軟體中以公平為考量的隨機路徑演算法
Random-Based Path Selection Algorithm for Maximum Concurrent Flow Problem with Bounded Path Degree and Its Applications in Software Defi ned Networks
指導教授: 蔡明哲
Tsai, Ming Jer
口試委員: 趙禧綠
Chao, Hsi-Lu
劉炳宏
Liu, Bing-Hong
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊系統與應用研究所
Institute of Information Systems and Applications
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 24
中文關鍵詞: 軟體定義網路三態內容詢址記憶體公平資料流分配
外文關鍵詞: SDN, TCAM, fairness, flow assignment
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,因為Google的成功案例,軟體定義網路(Software De ned Network)成為大資料(Big Data)與資料庫網路的當紅技術。為了提升使用者使用品質,我們希望能解決如何讓使用者在軟體定義網路下公平傳輸的問題。儘管已有一些研究是探討公平傳輸,但由於軟體定義網路中有三態內容詢址記憶體(Ternary Content Addressable Memory)的大小限制,以至於舊有的解法無法運用於我們的問題。在這篇論文中,我們提出了在有路由規則數量的限制下,如何最大化每個使用者服務品質的問題,並提出一個路徑選擇演算法來達成目標。除此之外,我們做了一些實驗來證明我們的演算法有非常好的結果。


    Recently, SDN springs up and gradually plays an important role. In order to improve quality-of-service (QoS) in SDN, we focus on the fairness traffic engineering among all users. There exist researches that solve QoS problems. However, the algorithms used to solve the traditional network problems cannot be applied to the problems in SDN because of the limitation of ternary content addressable memory (TCAM). Therefore, we propose the maximum concurrent flow problem with bounded path degree, which is proved to be NP-hard, and then design a random-based path selection algorithm to solve it. Finally, we provide some experimental analyses and show that the performances of our algorithm are really great.
    i

    Contents i List of Figures iii 1 Introduction 1 2 Related Works 4 3 Problem Defi nition 6 3.1 The Scenario 6 3.2 The Problem 7 3.3 The Hardness 10 4 The proposed Algorithm 13 4.1 The Maximum Concurrent Flow Problem 13 4.2 The Path Selection Algorithm . . . . . . . . . . . . . . . . . . . . . . 13 5 Performance Evaluation 16 6 Conclusion 21

    [1] A. Gonsalves, \Enterprises likely to need cisco and vmware sdn software," in http://searchsdn.techtarget.com/news/450295917/Enterprises-likely-to-need-Cisco-and-VMware-SDN-software, 2016.
    [2] R. Narayanan, S. Kotha, G. Lin, A. Khan, S. Rizvi, W. Javed, H. Khan, and S. A. Khayam, \Macro ows and micro
    ows: Enabling rapid network innovation through a split sdn data plane," in IEEE EWSDN, 2012, pp. 79-84.
    [3] R. Cohen, L. Lewin-Eytan, J. S. Naor et al., \On the e ect of forwarding table size on sdn network utilization," in IEEE INFOCOM, 2014, pp. 1734-1742.
    [4] B. Stephens, A. Cox, W. Felter, C. Dixon, and J. Carter, \Past: Scalable ethernet for data centers," in ACM CoNEXT, 2012, pp. 49-60.
    [5] X. Y. X. S. J. W. Yingya Guo, Zhiliang Wang, \Trac engineering in sdn/ospf hybrid network," in IEEE ICNP, 2014, pp. 563-568.
    [6] J. R. A. S. J. R. Nanxi Kang, Monia Ghobadi, \Ecient trac splitting on commodity switches," in ACM CoNEXT, 2015.
    [7] Y. Kanizo, D. Hay, and I. Keslassy, \Palette: Distributing tables in software defi ned networks," in IEEE INFOCOM, 2013, pp. 545-549.
    [8] N. Kang, Z. Liu, J. Rexford, and D. Walker, \Optimizing the one big switch abstraction in software-de ned networks," in ACM CoNEXT, 2013, pp. 13-24.
    [9] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, \Scalable
    ow-based networking with difane," ACM SIGCOMM, pp. 351-362, 2011.
    [10] A. V. G. W. P. Donovan, B. Shepherd, \Degree-constrained network flows," in ACM STOC, 2007, pp. 681-688.
    [11] M. Moshref, M. Yu, A. Sharma, and R. Govindan, \vCRIB: Virtualized rule management in the cloud," in Proc. NSDI, 2013.
    [12] F. Giroire, J. Moulierac, and T. K. Phan, \Optimizing rule placement in software-de ned networks for energy-aware routing," in IEEE GLOBECOM, 2014, pp. 2523-2529.
    [13] X.-N. Nguyen, D. Saucez, C. Barakat, and T. Turletti, \Ocer: A general optimization framework for open flow rule allocation and endpoint policy enforcement," in IEEE INFOCOM, 2015.
    [14] M. S. Georg Baier, Ekkehard Khler, \The k-splittable
    ow problem," in Algorithmica, 2005, pp. 231-248.
    [15] M. C. T. Lan, D. Kao and A. Sabharwal, \An axiomatic theory of fairness in network resource allocation," IEEE INFOCOM, pp. 1-9, 2010.
    [16] G. Retvari, J. J. Bro, and T. Cinkler, \Fairness in capacitated networks: A polyhedral approach," in IEEE INFOCOM, 2007, pp. 1604-1612.
    [17] E. Danna, S. Mandal, and A. Singh, \A practical algorithm for balancing the max-min fairness and throughput objectives in trac engineering," in IEEE INFOCOM, 2012, pp. 846-854
    [18] D. Nace and M. Pioro, \Max-min fairness and its applications to routing and load-balancing in communication networks: a tutorial," IEEE Communications Surveys & Tutorials, pp. 5-17, 2008.
    [19] R. Karp, \Reducibility among combinatorial problems," in Complexity of Computer Computations. Plenum Press, 1972, pp. 85-103.
    [20] N. Garg and J. Konemann, \Faster and simpler algorithms for multicommodity flow and other fractional packing problems," SICOMP, pp. 630-652, 2007.
    [21] R. Albert and A.-L. Barabasi, \Statistical mechanics of complex networks," APS Reviews of modern physics, p. 47, 2002.
    [22] M. Small, \Scale-free network," in MathWorld{A Wolfram Web Resource, created by Eric W. Weisstein.
    [23] Z.-I. B. (ZIB), \http://sndlib.zib.de/home.action."
    [24] M.-H. Wu, \Maximizing quality of service with rule table constraints in software
    defi ned network," 2015.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE