簡易檢索 / 詳目顯示

研究生: 曾國恩
Tseng, Guo-En
論文名稱: BSO(8)之K理論之穩定分解
Stable splitting of the complex connective K-theory of BSO(8)
指導教授: 顏東勇
Yan, Dung-Yung
口試委員: 王信華
Wang, Shin-Hwa
李華倫
Li, Hua-Lun
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 26
中文關鍵詞: 代數拓樸複連通K理論分類空間
外文關鍵詞: Algebraic Topology, Complex connective K-theory, Classifying space
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 透過BSO(8)之上同調作為E= Z/2<Q0,Q1>模之代數分解,我們分解了BSO(8)的複連通K理論。


    Through the algebraic splitting of cohomology of BSO(8) as E= Z/2<Q0,Q1>-module, we give the stable splitting of the complex connective K-theory of BSO(8).

    1. Introduction                 1 2. The E-module structure of H*(BSO(8))     4 3. Proof of theorem B             22 4. Reference                 26

    [1] J. F. Adam, & J. F. Adam (1995). Stable homotopy and generalised homology, University of Chicago press.
    [2] B. R. Burner and J. P. C. Greenlees, The connective K-theory of finite groups, Mem. Amer. Math. Soc., no. 785, (2003), Chap. 2.
    [3] A. Liulevicius, The cohomology of Massey-Peterson algebras, Math. Zeitschr., 105, (1968), 226-256.
    [4] E. Ossa, Connective K-theory of of elementary abelian groups, Transformation Groups, Osaka 1987, K. Kawakubo (ed.), Springer Lecture Notes in Mathematics, 1375, (1989), 269-275.
    [5] N. E. Steenrod, & D. B. Epstein (1962). Cohomology operations (No. 50-51). Princeton University Press.
    [6] T. H. Wu, Stable splittings of the complex connective K-theory of BSO(2n+1), Math. J. Okayama Univ., 60, (2018), 73-89.
    [7] W. T. Wu, Classes caractéristiques et i-carrés d'une variété, Comptes Rendus, 230, (1950), 508-511.
    [8] Y. J. Wong, (2016). Algebraic splitting of cohomology of BSO(7), Unpublished master's thesis, National Tsing Hua University, Hsin-Chu City, Taiwan.
    [9] W. S. Wilson and D. Y. Yan, Stable splitting of the complex connective K-theory of BO(n), Topology and its Applications, 159, (2012), 1409-1414.

    QR CODE