簡易檢索 / 詳目顯示

研究生: 麥凱玲
論文名稱: 鎂在銅導線製程中影響鉭擴散障礙層熱穩定性之研究
指導教授: 開執中
陳福榮
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2002
畢業學年度: 90
語文別: 中文
中文關鍵詞: 銅製程半導體製程銅鎂合金擴散障礙層熱穩定性
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對Cu(2at%-Mg)/Ta/SiO2/Si系統進行退火與分析,目的在探討銅中摻鎂對擴散障礙層鉭的熱穩定性影響。退火以有預退火400℃的實驗為主,而直接退火實驗作為對照組,溫度範圍由500℃至800℃,退火氛圍在10-1torr下,時間固定在30分鐘。分析儀器主要是利用場發射穿透式電子顯微鏡(FEG-TEM)進行觀察,使用能量散佈光譜儀(EDS)進行成份分析,附加使用四點探針(four-point probe)研究其電性。最後針對其失效機制進行討論。
    在400℃退火後,銅膜表面形成氧化鎂,有效防止銅膜與鉭層的氧化,原本的Cu(Mg)/Ta/SiO2/Si系統在退火之後已經變成為MgO/Cu/ Ta/SiO2/Si的結構。因此在預退火400℃的實驗中,試片表面皆已先形成氧化鎂薄膜。後續退火至600℃其結構仍保持完整,而鉭層已轉變成α相。700℃則發生鉭往外擴散的現象,在銅膜表面形成了MgTa2O6化合物,推測其原因為外界的氧無法擴散下來使鉭氧化,而高溫使銅晶界效應明顯而純鉭狀態不穩定,使得鉭有向銅膜表面移動的傾向,與氧化鎂反應形成化合物,而原本的氧化鎂層已無法辨識。800℃時銅膜表面形成連續的MgTa2O6化合物,判斷此化合物也能保持其下層結構不被氧化並連續完整,在高溫下取代了氧化鎂的作用。

    在直接退火的實驗中,失效機制與有預退火的實驗相同,原因是氧化鎂的形成速度很快,且是退火氛圍與鉭的氧化行為主宰了整個失效機制,並非氧化鎂的形成,即使氧化鎂是促使鉭往外擴散的原因之一。不過直接退火中因氧化鎂未先形成,使得少量氧擴散下來,在銅鉭界面形成泡狀物,但對整個實驗機制與熱穩定性影響不大。


    圖目錄 表目錄 第一章 前言 1-1 研究背景 1-2 研究動機與目的 第二章 文獻回顧 2-1 銅製程的發展 2-2 擴散障礙層 2-2-1 鉭擴散障礙層之行為與失效機制 2-3 銅鎂合金化 第三章 實驗與分析方法 3-1 實驗方法 3-2 分析方法 第四章 實驗結果與討論 4-1 實驗結果 4-1-1 觀察Cu(Mg)/Ta/SiO2/Si系統與10-1torr下400℃退火30分鐘後的現象 4-1-2 觀察樣品在400℃預退火後分別退火500℃、600℃、700℃及800℃後的現象 4-1-3 觀察樣品在直接退火500℃、600℃、700℃及800℃後的現象 4-1-4 樣品在各種退火條件下的片電阻分析 4-2 結果討論 4-2-1 鉭擴散障礙層的失效機制探討 4-2-2 銅膜內部摻雜鎂的影響與熱穩定性探討 4-2-3 直接退火與預退火的差別 第五章 結論 第六章 未來研究方向與建議 第七章 參考文獻

    第七章 參考文獻
    [1] Kai-Min Yin, Li Chang, Fu-Rong Chen, Ji-Jung Kai, Cheng-Cheng Chiang, Peijun Ding, Barry Chin, Hong Zhang and Fusen Chen, Thin Solid Films 388 (2001) 15-21.
    [2] Kai-Min Yin, Li Chang, Fu-Rong Chen, Ji-Jung Kai, Cheng-Cheng Chiang, Graham Chuang, Peijun Ding, Barry Chin, Hong Zhang and Fusen Chen, Thin Solid Films 388 (2001) 27-33.
    [3] Kai-Min Yin, Li Chang, Fu-Rong Chen and Ji-Jung Kai, Materials Chemistry and Physics 71 (2001) 1-6.
    [4] 殷開明,清華大學工程與科學研究所博士論文(2000)。
    [5] T. Oku, E. Kawakami, M. Uekubo, K. Takahiro, S. Yamagichi and M. Murakami, Applied Surface Science 99, 265 (1996).
    [6] C. –A. Chang, J. Vac. Sci. Technol., A8, 3796 (1990).
    [7] E. Kolowa, J. S. Chen, J. S. Reid, P. J. Pokela and M. –A. Nicolet, J. Appl. Phys., 70, 1369 (1991).
    [8] P. Catania, J. P. Doyle and J. J. Cuomo, J. Vac. Sci. Technol., A10, 3318 (1992).
    [9] P. Catania, J. P. Doyle and J. J. Cuomo, J. Appl. Phys., 74, 1008 (1993).
    [10] M. Takeyama, A. Noya, T. Sase and A. Ohta, J. Vac. Sci. Technol., B14, 674 (1996).
    [11] L. A. Clevenger, N. A. Cojarcxuk, K. Holloway, J. M. E. Harper, C. Cabral, Jr., R. G. Schad, F. Cardone and L. Stolt, J. Appl. Phys., 73, 300 (1992).
    [12] D. Gupta, Mat. Chem. and Phys., 41, 199 (1995).
    [13] E. M. Zielinski, R. P. Vinci and J. C. Bravman, Mat. Res. Soc. Symp. Proc., 391, 303 (1995).
    [14] G. Bai, S. Wittenbrock, V. Ochoa, R. Villasol, C. Chiang, T. Marieb, D. Gardner, C. Mu, D. Fraser, and M. Bohr, Mat. Res. Soc. Symp. Proc., 403, 501 (1996).
    [15] S. M. Rossnagel, C. Nichols, S. Hamaguchi, D. Ruzic and R. Turkot, J. Vac. Sci. Technol., B14, 1819 (1996).
    [16] S. –Y. Jang, S. –M. Lee and H. –K. Baik, J. Mat. Sci., Materials in Electronics, 7, 241 (1996).
    [17] B. –S. Kang, S. –M. Lee, J. S. Kwak and D. –S. Lee, Appl. Phys. Lett., 71, 2451 (1997).
    [18] M. T. Wang, Y. C. Lin and M. C. Chen, J. Electrochem. Soc., 145, 2538 (1998).
    [19] K. –W. Kwon, H. –J. Lee, C. Ryu, R. Sinclair and S. S. Wong, Conf. Proc. ULSI XIII, 711 (1998).
    [20] M. Stavrev, D. Fischer, F. Praessler, C. Wenzel and K. Drescher, J. Vac. Sci. Technol. A, 993 (1999).
    [21] G. S. Chen, P. Y. Lee and S. T. Chen, Thin Solid Films, 353, 264 (1999).
    [22] G. S. Chen and S. T. Chen, J. Appl. Phys., 87,8473 (2000).
    [23] K. Holloway and P. M. Fryer, Appl. Phys. Lett., 57, 1736 (1990).
    [24] K. Holloway, P. M. Fryer, C. Cabral, Jr., J. M. E. Harper, P. J. Bailey and K. H. Kelleher, J. Appl. Phys. 71, 5433 (1992).
    [25] K. –H. Min, K. –C. Chun and K. –B. Kim, J. Vac. Sci. Technol., B14, 3263 (1996).
    [26] P. J. Ding, W. A. Lanford, S. Hymes and S. P. Murarka, Appl. Phys. Lett., 64, 2897 (1994).
    [27] W. A. Lanford, P.J. Ding, W. Wang, S. Hymes and S. P. Murarka, Thin Solid Films 262 (1995) 234-241.
    [28] W. A. Lanford, P.J. Ding, Wei Wang, S. Hymes and S. P. Murarka, Materials Chemistry and Physics 41 (1995) 192-198.
    [29] Wonhee Lee, Heunglyul Cho, Bumseok Cho, Jiyoung Kim, Yong-Suk Kim, Woo-Gwang Jung, Hoon Kwon, Jinhyung Lee, Chongmu Lee, P. J. Reucroft and Jaegab Lee, J. Vac. Sci. Technol. A 18, 2972 (2000).
    [30] Wonhee Lee, Heunglyul Cho, Bumseok Cho, Jiyoung Kim, Yong-Suk Kim, Woo-Gwang Jung, Hoon Kwon, Jinhyung Lee, P. J. Reucroft, Chongmu Lee and Jaegab Lee, J. Electrochem. Soc. 147, 3066 (2000).
    [31] W. H. Lee, H. L. Cho, B. S. Cho, J. Y. Kim, W. J. Nam, Y-S. Kim, W. G. Jung, H. Kwon, J. H. Lee, J. G. Lee, P. J. Reucroft, C. M. Lee and E. G. Lee, Appl. Phys. Lett. 77, 2192 (2000).
    [32] Gregor Braeckelmann, Ramnath Venkatraman, Cristiano Capasso and Matthew Herrick, 2000 IEEE, 236-238.
    [33] Wonhee Lee, Heunglyul Cho, Bumseok Cho, Jiyoung Kim, Yong-Suk Kim, Woo-Gwang Jung, Hoon Kwon, Jinhyung Lee, P. J. Reucroft, Chongmu Lee, Eungu Lee and Jaegab Lee, J. Appl. Phys. Vol. 40 (2001) Pt. 1, No. 4A.
    [34] 黃志謀,清華大學工程與科學研究所碩士論文(2001)。
    [35] P. J. Ding, W. A. Lanford, S. Hymes and S. P. Murarka, J. Appl. Phys. 74, 1331 (1993).
    [36] Z. E. Horvath, G. Peto, Z. Paszti, E. Zsoldos, E. Szilagyi, G. Battistig, T. Lohner, G. L. Molnar and J. Gyulai, Nucl. Instrum. Methods Phys. Res. B, 868 (1999).
    [37] Zhen-Cheng Wu, Yu-Lin Liu and Mao-Chieh Chen, Thin Solid Films 358, 180 (2000).
    [38] S. Hymes, S. P. Murarka, C. Shepard and W. A. Lanford, J. Appl. Phys. 71, 4623 (1992).
    [39] S. Hymes, K. S. Kumar, S. P. Murarka, P. J. Ding, W. Wang and W. A. Lanford, J. Appl. Phys. 83, 4507 (1998).
    [40] Jian Li, J. W. Mayer and E. G. Colgan, J. Appl. Phys. 70, 2820 (1992).
    [41] Hitoshi Itow, Yasushi Nakasaki, Gaku Minamihaba, Kyoichi Suguro and Hatuo Okano, Appl. Phys. Lett. 63, 934 (1993).
    [42] P. J. Ding, W. Wang, W. A. Lanford, S. Hymes and S. P. Murarka, Appl. Phys. Lett. 65, 1778 (1994).
    [43] Wei Wang, W. A. Lanford and S. P. Murarka, Appl. Phys. Lett. 68, 1622 (1996).
    [44] S. P. Murarka, Metallization Theory and Practice for VLSI and ULSI, Butterworth, Boston, 1993.
    [45] P. J. Ding, W. A. Lanford, S. Hymes and S. P. Murarka, J. Appl. Phys. 75, 3627 (1994).
    [46] Robert H. Havemann and James A. Hutchby, Proceedings of the IEEE, Vol. 89, No. 5, May 2001.
    [47] J. Forster, 台灣應用材料股份有限公司內部資料。
    [48] Yosi Shacham-Diamond, Journal of Electronic Materials, Vol. 30, No. 4, 2001.
    [49] J. M. Poate, K. N. Tu, and J. M. Mayer, Thin Films:Interdiffusion and Reactions, (Wiley, New York, 1978) p. 376.
    [50] M. -A. Nicolet, Thin Solid Films 52, 415 (1978).
    [51] H. Kattelus and M. -A. Nicolet, Diffusion Phenomena in Thin Films and Microelectronic Materials, edited by D. Gupta and P. S. Ho (Noyes, Park Ridge, NJ, 1988), pp.432-498.
    [52] L. G. Feinstein and R. D. Huttemann, Thin Solid Films, 16 (1973) 129.
    [53] P. T. Moseley and C. T. Seabrook, Acta Cryst. (1973), B29, 1170.
    [54] J. Torres, Appl. Surf. Sci. 91, 112 (1995).
    [55] S. P. Murarka, Microelectron. Eng. 37/38, 29 (1997).
    [56] Tomi Laurila, Kejun Zeng, Jorma K. Kivilahti, Jyrki Molarius and Ilkka Suni, J. Appl. Phys., Vol. 88, No. 6, 15 September 2000.
    [57] Tomi Laurila, Kejun Zeng, Jorma K. Kivilahti, Jyrki Molarius and Ilkka Suni, J. Mater. Res., Vol.16, No.10, Oct 2001.
    [58] A. M. Brown and M. F. Ashby, Acta Metall. 28,1085 (1980).
    [59] G. Ottaviani, Thin Solid Films 86, 3 (1986).
    [60] G. Das, Thin Solid Films 12, 305 (1972).
    [61] P. T. Moseley and C. J. Seabrook, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 29, 1170 (1973).
    [62] L. G. Feinstein and R. D. Huttemann, Thin Solid Films 16, 129 (1973).
    [63] S. P. Garg, N. Krishnamurthy, A. Awasthi and M. Venkatraman, J. Phase Equilib. 17, 63 (1996).
    [64] Ling Liu, Yue Wang and Hao Gong, J. Appl. Phys., Vol. 90, No. 1, 1 July 2001.
    [65] R. Beyers, R. Sinclair and M. E. Thomas, J. Vac. Sci. Technol. B2 (1984) 781.
    [66] S. P. Murarka, Metallization Theory and Practice for VLSI and ULSI, Butterworth, New York, 1992.
    [67] S. P. Murarka, R. J. Gutmann, A. E. Kaloyeros and W. A. Lanford, Thin Solid Films, 236 (1994) 257.
    [68] J. Forster,台灣應用材料股份有限公司內部資料。
    [69] 呂登復編著,實用真空技術,黎明出版社,1989。
    [70] David B. Williams and C. Barry Carter, Transmission electron microscopy, 1949.
    [71] 陳力俊等著,材料電子顯微鏡學,國科會精儀中心,1994。
    [72] 陳福榮、張立,科儀新知,84. 4 (1995)。
    [73] 汪建民主編,材料分析,中國材料學會,1998。
    [74] 伍秀菁、汪若文、林美吟編輯,儀器總覽,國科會精儀中心,1998。
    [75] MgO:JCPDF 45-0946。
    [76] Cu:JCPDF 04-0836。
    [77] α-Ta:JCPDF 04-0788
    [78] MgTa2O6:JCPDF 32-0631。
    [79] Ta2O5:JCPDF 21-1198。
    [80] β-Ta:JCPDF 25-1280。
    [81] David R. Gaskell, Introduction to The Thermodynamics of Materials, 3rd ed., p. 370 (1995).
    [82] Gregor Platzki, Thermodynamical Data of Pure Substances, 3rd ed., 1997.
    [83] Phase Diagrams for Ceramists, edited by Robert S. Roth, Jennifer R. Dennis and Howard F. McMurdie (The American ceramic Society, INC, 1987), Vol. VI, Fig. 2318.
    [84] Y. Baskin and D. C. Schell, Journal of the American Ceramic Society, Vol. 46, No. 4, 175 (1963).
    [85] Halle G and Mueller-Buschbaum Hk, Journal of Solid State Chemistry, 142 (1988) p. 263-268.
    [86] Halle G and Mueller-Buschbaum Hk, Zeitschrift fuer Anorganische und Allgemeine Chemie, 562 (1988) p. 87-90.
    [87] W. R. Tyson and W. A. Miller, Surf. Sci. 62, 267 (1977).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE