研究生: |
陳敬霖 Chen, Ching Lin |
---|---|
論文名稱: |
無金屬自由基加成反應以苯胺基丁烯酮及烯烴合成苯基胺二酮與環化加成反應以雙烯基苯及亞硝基苯合成異噁唑衍生物 Metal-Free Radical Addition to Diketone via Propenone with Alkene and Cycloaddition of Dienylbenzene and Nitrosobenzene to Isoxazole Derivatives |
指導教授: |
劉瑞雄
Liu, Rai-Shung |
口試委員: |
李文泰
Li, Wen-Tai 謝仁傑 Hsieh, Jen-Chieh |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2016 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 177 |
中文關鍵詞: | 無金屬 、環化 、自由基加成反應 、苯基胺二酮 |
外文關鍵詞: | Metal-free, cyclization, radical addition reaction, 2-substituted-3-oxo-N-phenylbutanamide |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
第一章
經由自由基加成反應,以烯烴與添普調控所單離出之苯胺基丁烯酮基質((E)-4-(phenylamino)-4-((2,2,6,6-tetramethylpiperidin-1-yl)oxy) prop-3-en-1-substituted -2-one)在搭配0.03當量的樟腦磺酸、加熱至120°C的氮氣環境下進行加成,在此條件下,可得到高產率的苯基胺二酮形式的產物(2-substituted-3-oxo-N-phenylbutanamide)。
除此之外,本反應更可與前一步驟之分子內氧化反應進行一鍋化反應,產率也大多能夠維持有一定的水準(50%-70%)。
第二章
本章記錄利用無金屬催化的自由基加成環化反應來進行1-烯丙基-2-乙烯基苯與亞硝基苯的環化,利用亞硝基苯的自由基活性來促使1-烯丙基-2-乙烯基苯這種類型的雙烯化合物進行[2+2+2]的環化,建構出一系列氮氧雜環之結構產物2-苯基代-2,3,3a,4,9,9a-六氫萘並[2,3-d]異噁唑(2-phenyl-2,3,3a,4,9,9a-hexahydronaphtho[2,3-d]isoxazole),這種新的環加成反應是目前少數是使用烯烴來進行[2+2+2]合環反應的例子,而本篇討論之反應可以在不添加溶劑之氮氣環境下,加熱至120°C成功產生出理想產物。
PART 1
Here, we described the synthesis of 2-substituted-3-oxo-N-phenylbutanamide through an efficient radical addition reaction. Optimizing the condition for the radical addition of alkenes with (E)-4-(phenylamino)-4-((2,2,6,6-tetramethylpiperidin-1-yl)oxy) prop-3-en-1-substituted-2-one, and we have it best performed at 120 oC in toluene that described with moderate to good yields. The structures of products consist of diketone and N-phenylamide, which could be used for further applications such as providing starting materials for Mannich reaction to synthesize natural products.
PART 2
This part of the dissertation deals with a metal free [2+2+2] radical cycloaddition of 1-allyl-2-vinylbenzene derivatives and nitrosobenzenes constructing (1S,4S)-2-phenyl-2,3,4,5-tetrahydro-1H-4,1-(epoxymethano) benzo[c]azepine derivatives. The advantages of this new radical cycloaddition are based on the easily accessible substrates and the readily achievable condition. There are only few examples using alkene for [2+2+2] radical cycloaddition reactions so far, which highlighted the value of this research.
Chapter 1
[1] a) Chatgilialoglu, C.; Studer, A., Eds. Encyclopedia of Radicals in Chemistry, Biology and Materials; Wiley: Chichester, U.K. 2012. b) A. Studer, D. P. Curran., Angew. Chem. Int. Ed. 2016, 55, 58-102.
[2] Sharma, P. and Liu, R.-S., Chem. Eur. J. 2015, 21, 4590–4594.
[3] a) Griller, David and Ingold, Keith U., Accounts of Chemical Research. 1976, vol. 9, 13-19. b) M. Gomberg. J. Am. Chem. Soc. 1900, 22 (11), 757–771. c) Jacek Zielonka, Hongtao Zhao, Yingkai Xu, B. Kalyanaraman., Free Radical Biology & Medicine. 2005, 39 (7), 853–863. d) Kamigaito, M.; Ando, T.; Sawamoto, M., Chem Rev. 2001, 101, 3689. e) Matyjaszewski, K.; Xia., J. Chem Rev. 2001, 101, 2921.
[4] a) B. E. Daikh, R. G. Finke, J. Am. Chem. Soc. 1992, 114, 2938. b) B. E. Daikh, R. G. Finke, J. Am Chem. Soc. 1991, 113, 4160. c) E. Rijnberg, J. Boersma, J. T. B. H. Jastrzebski, M. T. Lakin, A. L. Spek, G. van Koten, Organometallics. 1997, 16, 3158. d) G. Pattenden, Chem. Soc. Rev. 1988, 17, 361. e) J. Iqbal, B. Bhatia, N. K. Nayyar, Chem. Rev. 1994, 94, 519. f) B. P. Branchaud, G.-X. Yu, Organometallics. 1993, 12, 4262. g) H. Bhandal, A. R. Howell, V. F. Patel, G. Pattenden, J. Chem. Soc. Perkin Trans. 1. 1988, 29, 167. h) M. S. Kharasch, E. V. Jensen, W. H. Urry, Science. 1945, 102, 128. i) M. S. Kharasch, E. V. Jensen, W. H. Urry, J. Am. Chem. Soc. 1945, 67, 1626. j) F. Minisci, Acc. Chem. Res. 1975, 8, 165. k) D. Bellus, Pure Appl. Chem. Soc. 1985, 67, 1626. l) R. A. Gossage, L. A. van de Kuil, G. van Koten, Acc. Chem. Res. 1998, 31, 423. m) H. Matsumoto, T. Nakano, Y. Nagai, J. Organometal. Chem. 1979, 174, 157. n) C. L. Hill, Synlett. 1995, 127.
[5] a) D. H. R Barton, J. M. Beaton, L. E. Geller, M. M. Pechet, J. Am. Chem. Soc. 1960, 82, 2640. b) G. Majetich, K. Wheless, Tetrahedron. 1995, 51, 7095. c) D. H. R. Barton, R. P. Budhiraja, J. F. Mcghie, J. Chem. Soc. C. 1969, 336. d) Y. L. Chow, Acc. Chem. Res. 1973, 6, 354. e) A. Bravo, H.-R. Bjørsvik, F. Fontana, L. Liguori, F. Minisci, J. Org. Chem. 1997, 62, 3849.
[6] a) A. Studer, Angew. Chem. 2000, 112, 1157 ; Angew. Chem. Int. Ed., 2000, 39, 1108. b) T. J. Conolly, J. C. Scaiano, Tetrahedro Lett. 1997, 38, 1133. c) M. V. Ciriano, H.-G. Korth, W. B. van Scheppingen, P. Mulder, J. Am. Chem. Soc. 1999, 121, 6375.
[7] a) Valerie A. Schmidt, Erik J. Alexanian, J. Am. Chem. Soc. 2011, 133, 11402-11405. b) Benjamin C. Giglio, Valerie A. Schmidt, Erik J. Alexanian, J. Am. Chem. Soc. 2011, 133, 13320-13322. c) Ryan K. Quinn, Valerie A. Schmidt, Erik J. Alexanian, Chem. Sci. 2013, 4, 4030-4034.
[8] a) Christian Wetter, Katja Jantos, Katharina Woithe, Armido Studer, Org. Lett. 2003, 5 (16), 2899-2902. b) Armido Studer, Tobias Schulte, The Chemical Record, 2005, 5, 27-35.
[9] a) Flávia A. F. da Rosa, Ricardo A. Rebelo, Maria G. Nascimento. J. Braz. Chem. Soc. 2003, 14, 11-15. b) J. P. Kutney, R. T. Brown, E. Piers, Calladiall Journal of Chemistry. 1963, 44, 637-639. c) J. Michael, P. Reichardt, J. G. Sweeny, J. Am. Chem. Soc. 1973, 95 (16), 5407-5409.
[10] O. A. Luk'yanov, G. V. Pokhvisneva. Russ. Chem. Bull. (Int. Ed.), 2015, 64, 83-63.
[11] Dubovyk, I.; Iain, D. G. W.; Yudin, A. K. J. Org. Chem. 2013, 78, 1559-1575.
[12] Murahashi, S.-I.; Imada, Y.; Taniguchi, Y.; Kodera, Y. Tetra. Lett. 1988, 29, 2973-2976.
[13] Keck, G. E.; Webb, R. R. II. Tetra. Lett. 1982, 23, 3051-3054.
[14] Bo Wen, Joseph K. Hexum, John C. Widen, Daniel A. Harki, Kay M. Brummond. Org. Lett., 2013, 15 (11), 2644–2647.
[15] Audrey Boutier, Claire Kammerer-Pentier, Norbert Krause, Guillaume Prestat, Giovanni Poli. Chem. Eur. J. 2012, 18, 3840 – 3844.
[16] Jyoti Agarwal, Claude Commandeur, Max Malacria, Serge Thorimbert. J. Agarwal et al. Tetrahedron, 2013, 69, 9398-9405.
Chapter 2
[1] a) Rice, W.G.; Hillter, C. D.; Harten, B.; Schaeffer, C. A.; Dorminy, M. Lackey, D. A., III; Kirsten, E.; Mendeleyev,J.;Buki,K. G.; Hakam,A.;Kun, E. Proc. Natl. Sci. U.S.A. 1992, 89, 7703-07. b)Rice,W. G.; Schaeffer, C. A.; Harten, B.; Villiger, F.; South, T. L.; Summers, M. F.; Henderson, L. E.; Bess, J. W., Jr.; Arthur, L. O.; McDougal, J. S.; Orloff, S. L.; Mendeleyev, J.; Kun, E. Nature. 1993, 361, 473.
[2] a) Strith, J.; Defoin, A. Synthesis 1994, 1107. b) Kibayashi, C.; Aoyagi, S. Synlett. 1995, 873. c) Vogt, P. F.; Miller, M. J. Tetrahedron. 1998, 54, 1317. d) Adam, W.; Krebs, O. Chem. Rev. 2003, 103,4131. e) Iwasa, S.; Fakfruddin, A.; Nishiyama, H. Mini-Rev. Org. Chem. 2005, 2, 157. f) Yamamoto, Y.; Yamamoto, H. Eur. J. Org. Chem. 2006, 2031.
[3] Bhunia, S.; Ghorpade, S.; Huple, D. B.; L., R.-S. Angew. Chem. Int. Ed. 2012, 51, 2939-2942.
[4] Ghorpade, S.; Jadhav, P. D.; L., R.-S. Chem. Eur. J. 2016, 22, 2915-2919.
[5] a) Petr Zuman, Bhacdeep Shah; Chem. Rev. 1994, 94, 1621-1641. b)
Bhujle, V.; Wild, U. P.; Baumann, H. Tetrahedron. 1976, 32, 467- 471. c) Lauer, W. M.; Sprung, M. M.; Langkammerer, C. M. J. Am.Chem. Soc. 1936, 58, 225-228. d) Benesch, R. E.; Benesch, R. J. Am. Chem. Soc. 1955, 77, 5877- 5881. e) Gilman, H.; McCracken, R. J. Am. Chem. Soc. 1927, 49, 1052-1061. f) Yunes, R. A,; Terenzani, A. J.; Andrich, D. D.; Scarabino, C. A. J . Chem. Soc., Perkin Trans. 2 1973, 696-700.
[6] a) R. F. Heck, J. Am. Chem. Soc. 1972, 94, 2712. b) Evans, D.; Osborn, J.; Wilkinson, G. J. Chem. Soc. A. 1968, 3133. c) Yagupsky, M.; Wilkinson, G. J. Chem. Soc. A. 1970, 941. d) Larionov, E.; Li, H. H.; Mazet, C. Chem. Commun. 2014, 50, 9816. e) G. A. Molamder.; E. E. Knight. J. Org. Chem. 1998, 63, 7009-7012. f) Y. Uozumi.; H. Tsuji.; T. Hayashi. J. Org. Chem. 1998, 63, 6137-6140. g) T. Hayashi.; Y. Uozumi. J. Org. Chem. 2001, 66, 1441-1449.
[7] a) Lumsden, M. D.; Wu, G.; Wasylishen, R. E.; Curtis, R. D. J. Am. Chem. Soc. 1993, 115, 2825-2832.b) Orrell, K. G.; Sik, V.; Stephenson, D. Magn. Reson. Chem. 1987, 25, 1007-1011.c) Orrell, K. G.; Sik, V.; Stephenson, D.; Thierry, R. Magn. Reson. Chem. 1989, 27, 368-76.d) Politzer, P.; Bar-adon, R. J. Phys. Chem. 1987, 91, 2069-73. e) Cameron, M.; Gowenlock, B. G.; Vasapollo, G. Chem. Soc. Rev. 1990, 19, 355-79. f) Petr Zuman; Bhavdeep Shah. Chem.Rev. 1994, 94, 1621-1641.
[8] a) Kurt Torssell. Acta. Chem. Scand. 1969, 23, 522-530. b) Cardenas, A. J.; Culotta, B. J.; Warren, T. H.; Grimme, S.; Stute, A.; Fröhlich, R.; Kehr, G.; Erker, G. Angew. Chem. Int. Ed. 2011, 50, 7565-7571.
[9] Charles P. Frazier.; Alejandro Bugarin.; Jarred R. Engelking.; Javier Read de Alaniz. Org. Lett., 2012, 14, No. 14, 3620-3623. Shi, Z.; Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3381.
[10] Satish Ghorpade.; Prakash D. Jadhav.; Rai-Shung Liu. Chem. Eur. J. 2016, 22, 2915-2919. F. Cardona, A. Goti. Angew. Chem. Int. Ed. 2005, 44, 7832-7835.
[11] Hu Chen, Zhaofeng Wang, Yingnan Zhang, Yong Huang. J. Org. Chem. 2013, 78, 3503−3509.
[12] Jun Yong Kang, Alejandro Bugarin, Brian T. Connell. Chem. Commun. 2008, 3522–3524.
[13] Sato, Ken-Ichi; Akai, Shoji; Hiroshima, Toshiyuki; Aoki, Hidenori; Sakuma, Mayumi; Suzuki, Ken-Ju. Tetra. Lett. 2003, 44, 3513-3516.
[14] R. David Grigg, Ryan Van Hoveln, Jennifer M. Schomaker. J. Am. Chem. Soc., 2012, 134 (39), 16131–16134
[15] M. Ohashi, T. Kawashima, T. Taniguchi, K. Kikushima, S. Ogoshi. Organometallics, 2015, 34 (9), 1604–1607
[16] A. A. Mikhaylova, A. D. Dilmana, R. A. Novikova, Y. A. Khoroshutina, M. I. Struchkovaa, D. E. Arkhipovb, Y. V. Nelyubinab, A. A. Tabolina, S. L. Ioffe. Tetrahedron Letters. 2016, 57, 11–14.