簡易檢索 / 詳目顯示

研究生: 黃士洪
Huang, Shihhung
論文名稱: 在四次圓紋曲面內的三個彼此相切球及其相關作圖
Three Mutually Tangential Spheres in Cyclide and Related Constructions
指導教授: 全任重
Chuan, Jen-Chung
口試委員: 李明恭
李華倫
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 23
中文關鍵詞: 反演四次圓紋曲面史代納不定設題
外文關鍵詞: Inversion, Steiner porism, Cyclide
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 透過相對於空間中一個固定的反演球面反演一個甜甜圈(Ring Torus),我們可以得到四次圓紋曲面(Ring Cyclide)的幾何曲面;對於其他相關的四次圓紋曲面也將會被討論以及展示。
    基於Steiner Porism以及三球定理,希望可以對於Steiner Porism的基本元素三個彼此相切的圓圈鏈(3-chain for Steiner),推廣到三個彼此相切球面鏈,進而得到並展示類似於Steiner Porism的幾何性質。


    By means of inversion with respect to a sphere in space, torus will be transformed to surface, called cyclide. The parabolic cyclide will be shown in this thesis. Also, the deformation of Dupin cyclide illustrated by a symmetric Dupin horn cyclide will be demonstrated, too. Based on Steiner porism, Steiner annulus 3-chain(sphere case) is studied in this thesis. To obtain the geometric properties similiar to Steiner porism on surface of cyclide, we intend to focus on three mutually tangential spheres in Dupin ring cyclide.
    keywords: Inversion; Dupin cyclide; Steiner porism.

    Contents 1 Introduction to Cyclides 2 1.1 Introduction . . . 2 1.2 The Cyclide via Inversion w.r.t. Sphere . . . 2 2 The Symmetric Dupin Horn Cyclide 5 2.1 Create The Symmetric Dupin Horn Cyclide . . . 5 2.2 Deformation Generated by Symmetric Dupin Horn Cyclide . . . 6 3 Common External Tangential Cone of Two Spheres 11 3.1 Central Similarity . . . 11 3.2 Constructions of Tangential Lines of Two Circles . . . 11 4 Properties in Cyclide Generated by Inversion 15 4.1 The Collinear Property in Ring Cyclide . . . 15 4.2 The Concurrent Property in Ring cyclide. . . 18 4.3 The Relationship between Collinear Lines and A Concurrent Point . . . 20

    Bibliography
    [1] http ://mathworld:wolfram:com/Cyclide:html .
    [2] http ://mathworld:wolfram:com/ParabolicCyclide:html .
    [3] http ://mathworld:wolfram:com/StandardTori:html .
    [4] http ://mathworld:wolfram:com/Torus:html .
    [5] http://poncelet.math.nthu.edu.tw/disk3/cabrijava/steiner-porisms.html .
    [6] http ://steiner/math/nthu/edu/tw/d3/d2/3d/3spheres/ .
    [7] http ://steiner/math/nthu/edu/tw/d3/d2/Porism/ .
    [8] http://www.oz.nthu.edu.tw/g9621515/thesis.html .
    [9] Wendelin L.E. Degen Gudrun Albrecht. Construction of bezier rectangles and triangles on the
    symmetric dupin horn cyclide by means of inversion. Computer Aided Geometric Design, pages
    349{375, 1997.
    [10] Walter J. Meyer. Geometry and its applications. Elsevier Academic Press, 2nd ed. edition, 2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE