研究生: |
羅逸雯 Yi-Wen Lo |
---|---|
論文名稱: |
Project 1 : 利用氧化還原的蛋白質體學方式分析具有艾黴素抗藥性的子宮肌瘤癌中巰基活性的改變;Project 2 : 藉由蛋白質體學分析粒線體在含有艾黴素抗藥性的人類子宮肌瘤癌細胞中的蛋白質表現 Project 1 : Redox-proteomic analysis of doxorubicin resistance-induced altered thiol activity in uterine carcinoma;Project 2 : Mitochondrial proteome of doxorubicin-resistant human uterine cancer cells |
指導教授: |
周秀專
Hsiu-Chuan Chou |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
|
論文出版年: | 2013 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 141 |
中文關鍵詞: | 子宮肌瘤癌 、艾黴素 、蛋白質體學 、粒線體 、氧化還原 |
外文關鍵詞: | uterine carcinoma, doxorubicin, proteomic, mitochondrial, redox |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要 Project 1:
目前在臨床上艾黴素 (doxorubicin) 是廣泛用於治療癌症的化療藥物,而長期使用艾黴素治療癌症所引起的抗藥性一直是治療癌症的障礙。近期有研究指出,化療藥物所產生的ROS (reactive oxygen species) 會促進抗藥性癌細胞的生長,然而,氧化還原的修飾和抗藥性癌細胞中那些目標蛋白質作用尚未釐清。我們藉由半胱胺酸 (cysteine) 螢光標定蛋白質樣品,進行氧化還原二維差異電泳 (Redox-DIGE) 並結合基質輔助雷射脫附游離法 (MALDI-TOF MS) 分析影響抗藥性子宮肌瘤癌細胞中氧化還原的調控蛋白。在蛋白質體學技術研究指出有33個蛋白質點其巰基團 (thiol group) 有顯著的變化,這些蛋白質參與了細胞骨架調節、訊息傳遞、氧化還原調節、糖解作用和細胞週期調節。以目前研究結果指出,氧化還原二維差異電泳提供了一個快速的方法來研究艾黴素對子宮肌瘤癌細胞的分子機制以及成為診斷治療的應用。
中文摘要 Project 2:
粒線體在細胞中是一個很重要的胞器,它負責細胞的多種功能,包括能量代謝調節、細胞生長與分裂、自由基的產生並參與細胞凋亡路徑。曾有研究指出,使用化療藥物治療的癌細胞時,會導致粒線體的缺陷和氧化磷酸化及能量產生等機能失調。在我們的研究中,是從細胞中萃取粒線體以增加粒線體蛋白質的含量,再將粒線體蛋白質樣品進行二維差異電泳 (2D-DIGE) 並結合基質輔助雷射脫附游離法 (MALDI-TOF MS) 分析在不同抗藥性的子宮肌瘤細胞之間有差異表現的粒線體蛋白質。在蛋白質體學技術研究中我們鑑定出有101個蛋白質點有顯著性變化,其中有39個蛋白質點是屬於粒線體的部分。我們進一步使用RNA干擾技術,研究乙醯輔酶A乙醯轉移酶 (ACAT1) 和蘋果酸脫氫酶2 (MDH2) 這兩個粒線體蛋白質。在我們的研究結果發現,當細胞knockdown掉這兩個粒線體蛋白質後,其細胞存活率下降,而且增加細胞凋亡的現象。由此實驗結果顯示,在未來可望在處理抗藥性子宮肌瘤癌時,ACAT1和MDH2能成為未來治療和診斷的指標。
Abstract Project 1 :
Doxorubicin is a chemotherapy used in a wide range of cancer therapies in clinical, and doxorubicin-induced drug resistance following long-time drug exposure is one of the most serious obstacles of chemotherapy. Recent studies have showed chemotherapy will produce the generation of ROS (reactive oxygen species) and then promote drug resistant cancer cells grow. However, the redox-modifications of proteins and cellular targets central to resistant cancers are largly unknown. We used the cysteine labeling protein samples by means of two-dimensional differential gel electrophoresis (2D-DIGE) and MALDI-TOF mass spectrometry (MALDI-TOF MS) to analyze the effects of doxorubicin resistance on redox-regulated proteins in uterine cancer cells. Proteomics research studies demonstrated 33 protein spots have significantly changed in thiol group reactivity. These proteins involve in cytoskeleton regulation, signal transduction, redox-regulation, glycolysis and cell-cycle regulation. In the present results, redox 2D-DIGE provides a quickly way to study the molecular mechanism and possible diagnostic or therapeutic applications in the doxorubicin-induced drug resistant uterine cancer cells.
Abstract Project 2 :
Mitochondria are key organelles, they are responsible for several cellular functions including energy metabolism regulation, cell growth, division, free radical production and participate cell apoptosis previous studies showed chemotherapy for cancer cells may lead to mitochondrial defects, oxidative phosphorylation and energy production disorders. In our study, mitochondria were isolated and mitochondrial proteins were enriched and obtained. By means of two-dimensional differential gel electrophoresis (2D-DIGE) and matrix-assistant laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS), 101protein spots were significantly changed, including 39 protein spots belongs to mitochondria. We further used RNA interference to analyze acetyl-coenzyme A acetyltransferase 1 (ACAT1) and malate dehydrogenase 2 (MDH2). Our data indicated cell viability is decreased and cell apoptosis is increased when these two mitochondrial proteins were knockdown. Experimental results show ACAT1 and MDH2 can become therapeutic candidates and diagnostic markers for the treatment of drug-resistance uterine cancer in the future.
Anderson, B., & Sawyer, D. B. (2008). Predicting and preventing the cardiotoxicity of cancer therapy. Expert Rev Cardiovasc Ther, 6(7), 1023-1033. doi: 10.1586/14779072.6.7.1023
Andreyev, A. Y., Kushnareva, Y. E., & Starkov, A. A. (2005). Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc).
Basu, S., Ganguly, A., Chakraborty, P., Sen, R., Banerjee, K., Chatterjee, M., . . . Choudhuri, S. K. (2012). Targeting the mitochondrial pathway to induce apoptosis/necrosis through ROS by a newly developed Schiff's base to overcome MDR in cancer. Biochimie, 94(1), 166-183. doi: 10.1016/j.biochi.2011.10.004
Bemlih, S., Poirier, M.-D., & Andaloussi, A. E. (2010). Acyl-coenzyme A: Cholesterol acyltransferase inhibitor Avasimibe affect survival and proliferation of glioma tumor cell lines. Cancer Biology & Therapy, 9(12), 1025-1032. doi: 10.4161/cbt.9.12.11875
Brown, W. M., George, M. J., & Wilson, A. C. (1979). Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci, 76, 1967-1971.
Buckman, J. F., Hernández, H., Kress, G. J., Votyakova, T. V., Pal, S., & Reynolds, I. J. (2001). MitoTracker labeling in primary neuronal and astrocytic cultures: influence of mitochondrial membrane potential and oxidants. Journal of Neuroscience Methods, 104, 165-176.
Carr, S. A., Huddleston, M. J., & Annan, R. S. (1996). Selective detection and sequencing of phosphopeptides at the femtomole level by mass spectrometry. Anal Biochem, 239(2), 180-192. doi: 10.1006/abio.1996.0313
Chan, H. L., Gharbi, S., Gaffney, P. R., Cramer, R., Waterfield, M. D., & Timms, J. F. (2005). Proteomic analysis of redox- and ErbB2-dependent changes in mammary luminal epithelial cells using cysteine- and lysine-labelling two-dimensional difference gel electrophoresis. Proteomics, 5(11), 2908-2926. doi: 10.1002/pmic.200401300
Chazotte, B. (2011). Labeling mitochondria with MitoTracker dyes. Cold Spring Harb Protoc, 2011(8), 990-992. doi: 10.1101/pdb.prot5648
Chipuk, J. E., Bouchier-Hayes, L., & Green, D. R. (2006). Mitochondrial outer membrane permeabilization during apoptosis: the innocent bystander scenario. Cell Death Differ, 13(8), 1396-1402. doi: 10.1038/sj.cdd.4401963
D'Angelo, E., & Prat, J. (2010). Uterine sarcomas: a review. Gynecol Oncol, 116(1), 131-139. doi: 10.1016/j.ygyno.2009.09.023
Edman, P. (1949). A method for the determination of amino acid sequence in peptides. Arch Biochem, 22(3), 475.
Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F., & Whitehouse, C. M. (1989). Electrospray ionization for mass spectrometry of large biomolecules. Science, 246(4926), 64-71.
Fornari, F. A. J., Jarvis, W. D., Grant, S., Orr, M. S., Randolph, J. K., White, F. K., . . . Gewirtz, D. A. (1994). Induction of Differentiation and Growth Arrest Associated with Nascent (Nonoligosomal) DNA Fragmentation and Reduced c-myc Expression in MCF-7 Human Breast Tumor Cells after Continuous Exposure to a Sublethal Concentration of Doxorubicin. Cell Growth & Differentiation, 723-733.
Gilliam, L. A., Moylan, J. S., Patterson, E. W., Smith, J. D., Wilson, A. S., Rabbani, Z., & Reid, M. B. (2012). Doxorubicin acts via mitochondrial ROS to stimulate catabolism in C2C12 myotubes. Am J Physiol Cell Physiol, 302(1), C195-202. doi: 10.1152/ajpcell.00217.2011
Gorg, A., Weiss, W., & Dunn, M. J. (2004). Current two-dimensional electrophoresis technology for proteomics. Proteomics, 4(12), 3665-3685. doi: 10.1002/pmic.200401031
Goukassian, D., Morgan, J., & Yan, X. (2012). Neuregulin1-ErbB Signaling in Doxorubicin-Induced Cardiotoxicity.
Henzel, W. J., Billeci, T. M., Stults, J. T., Wong, S. C., Grimley, C., & Watanabe, C. (1993). Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc Natl Acad Sci U S A, 90(11), 5011-5015.
Hirano, H. (2004). [Two-dimensional electrophoresis and proteomics]. Seikagaku, 76(10), 1320-1327.
Ivanova, S., Gregorc, U., Vidergar, N., Javier, R., Bredt, D. S., Vandenabeele, P., . . . Turk, B. (2011). MAGUKs, scaffolding proteins at cell junctions, are substrates of different proteases during apoptosis. Cell Death Dis, 2, e116. doi: 10.1038/cddis.2010.92
James, P., Quadroni, M., Carafoli, E., & Gonnet, G. (1993). Protein identification by mass profile fingerprinting. Biochem Biophys Res Commun, 195(1), 58-64. doi: 10.1006/bbrc.1993.2009
Jiang, J., Zhang, Y., Krainer, A. R., & XU, R.-m. (1999). Crystal structure of human p32, a doughnut-shaped acidic mitochondrial matrix protein.
Karas, M., & Hillenkamp, F. (1988). Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem, 60(20), 2299-2301.
Kemp, M., Go, Y. M., & Jones, D. P. (2008). Nonequilibrium thermodynamics of thiol/disulfide redox systems: a perspective on redox systems biology. Free Radic Biol Med, 44(6), 921-937. doi: 10.1016/j.freeradbiomed.2007.11.008
Koenig, R., Stegemann, H., Francksen, H., & Paul, H. L. (1970). Protein subunits in the potato virus X group. Determination of the molecular weights by polyacrylamide electrophoresis. Biochim Biophys Acta, 207(1), 184-189.
Kondo, T., & Hirohashi, S. (2009). Application of 2D-DIGE in cancer proteomics toward personalized medicine. Methods Mol Biol, 577, 135-154. doi: 10.1007/978-1-60761-232-2_11
Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., . . . International Human Genome Sequencing, C. (2001). Initial sequencing and analysis of the human genome. Nature, 409(6822), 860-921. doi: 10.1038/35057062
Leslie, E. M., Deeley, R. G., & Cole, S. P. (2005). Multidrug resistance proteins: role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense. Toxicol Appl Pharmacol, 204(3), 216-237. doi: 10.1016/j.taap.2004.10.012
Lin, S. T., Chou, H. C., Chang, S. J., Chen, Y. W., Lyu, P. C., Wang, W. C., . . . Chan, H. L. (2012). Proteomic analysis of proteins responsible for the development of doxorubicin resistance in human uterine cancer cells. J Proteomics, 75(18), 5822-5847. doi: 10.1016/j.jprot.2012.07.047
Ling, X., Zhou, Y., Li, S. W., Bin, Y., & Wen, L. (2010). Modulation of Mitochondrial Permeability Transition Pore Affects Multidrug Resistance in Human Hepatocellular Carcinoma Cells. Int. J. Biol. Sci.
Liu, Q., Harvey, C. T., Geng, H., Xue, C., Chen, V., Beer, T. M., & Qian, D. Z. (2013). Malate dehydrogenase 2 confers docetaxel resistance via regulations of JNK signaling and oxidative metabolism. Prostate, 73(10), 1028-1037. doi: 10.1002/pros.22650
Mann, M., Hojrup, P., & Roepstorff, P. (1993). Use of mass spectrometric molecular weight information to identify proteins in sequence databases. Biol Mass Spectrom, 22(6), 338-345. doi: 10.1002/bms.1200220605
Momparler, R. L., Karon, M., Siegel, S. E., & Avila, F. (1976). Effect of adriamycin on DNA, RNA, and protein synthesis in cell-free systems and intact cells. Cancer Res, 36(8), 2891-2895.
Moreau, C., Cartron, P. F., Hunt, A., Meflah, K., Green, D. R., Evan, G., . . . Juin, P. (2003). Minimal BH3 peptides promote cell death by antagonizing anti-apoptotic proteins. J Biol Chem, 278(21), 19426-19435. doi: 10.1074/jbc.M209472200
O'Farrell, P. H. (1975). High resolution two-dimensional electrophoresis of proteins. J Biol Chem, 250(10), 4007-4021.
Outomuro, D., Grana, D. R., Azzato, F., & Milei, J. (2007). Adriamycin-induced myocardial toxicity: new solutions for an old problem? Int J Cardiol, 117(1), 6-15. doi: 10.1016/j.ijcard.2006.05.005
Pappin, D. J., Hojrup, P., & Bleasby, A. J. (1993). Rapid identification of proteins by peptide-mass fingerprinting. Curr Biol, 3(6), 327-332.
Raymond, S., & Weintraub, L. (1959). Acrylamide gel as a supporting medium for zone electrophoresis. Science, 130(3377), 711.
Roundhill, E. A., & Burchill, S. A. (2012). Detection and characterisation of multi-drug resistance protein 1 (MRP-1) in human mitochondria. Br J Cancer, 106(6), 1224-1233. doi: 10.1038/bjc.2012.40
Satelli, A., & Li, S. (2011). Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell Mol Life Sci, 68(18), 3033-3046. doi: 10.1007/s00018-011-0735-1
Shapiro, A. L., Vinuela, E., & Maizel, J. V., Jr. (1967). Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem Biophys Res Commun, 28(5), 815-820.
Swain, S. M., Whaley, F. S., & Ewer, M. S. (2003). Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer, 97(11), 2869-2879. doi: 10.1002/cncr.11407
Swatton, J. E., Prabakaran, S., Karp, N. A., Lilley, K. S., & Bahn, S. (2004). Protein profiling of human postmortem brain using 2-dimensional fluorescence difference gel electrophoresis (2-D DIGE). Mol Psychiatry, 9(2), 128-143. doi: 10.1038/sj.mp.4001475
Timms, J. F., & Cramer, R. (2008). Difference gel electrophoresis. Proteomics, 8(23-24), 4886-4897. doi: 10.1002/pmic.200800298
Tiselius, A. (1937). Electrophoresis of serum globulin. I. Biochem J, 31(2), 313-317.
Valko, M., Izakovic, M., Mazur, M., Rhodes, C. J., & Telser, J. (2004). Role of oxygen radicals in DNA damage and cancer incidence. Molecular and Cellular Biochemistry, 37-56.
Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., . . . Zhu, X. (2001). The sequence of the human genome. Science, 291(5507), 1304-1351. doi: 10.1126/science.1058040
Vogl, T., Roth, J., Sorg, C., Hillenkamp, F., & Strupat, K. (1999). Calcium-induced noncovalently linked tetramers of MRP8 and MRP14 detected by ultraviolet matrix-assisted laser desorption/ionization mass spectrometry. J Am Soc Mass Spectrom, 10(11), 1124-1130.
Von Hoff, D. D., Layard, M. W., Basa, P., Davis, H. L., Jr., Von Hoff, A. L., Rozencweig, M., & Muggia, F. M. (1979). Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med, 91(5), 710-717.
Wasinger, V. C., Cordwell, S. J., Cerpa-Poljak, A., Yan, J. X., Gooley, A. A., Wilkins, M. R., . . . Humphery-Smith, I. (1995). Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis, 16(7), 1090-1094.
Westermeier, R., & Scheibe, B. (2008). Difference gel electrophoresis based on lys/cys tagging. Methods Mol Biol, 424, 73-85. doi: 10.1007/978-1-60327-064-9_7
Wilm, M., Neubauer, G., & Mann, M. (1996). Parent ion scans of unseparated peptide mixtures. Anal Chem, 68(3), 527-533.
Yates, J. R., 3rd, Speicher, S., Griffin, P. R., & Hunkapiller, T. (1993). Peptide mass maps: a highly informative approach to protein identification. Anal Biochem, 214(2), 397-408. doi: 10.1006/abio.1993.1514
Zhang, S., Liu, X., Bawa-Khalfe, T., Lu, L. S., Lyu, Y. L., Liu, L. F., & Yeh, E. T. (2012). Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med, 18(11), 1639-1642. doi: 10.1038/nm.2919
Zimny-Arndt, U., Schmid, M., Ackermann, R., & Jungblut, P. R. (2009). Classical proteomics: two-dimensional electrophoresis/MALDI mass spectrometry. Methods Mol Biol, 492, 65-91. doi: 10.1007/978-1-59745-493-3_4