研究生: |
蘇紋正 Wen-Cheng Su |
---|---|
論文名稱: |
離子熔液對水之環境性質量測 The Measurement of The Environment Properties in The Ionic Liquids to Water |
指導教授: |
汪上曉
David Shan-Hill Wong |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 60 |
中文關鍵詞: | 離子熔液 、正辛醇/水分配係數 、對水之擴散係數 |
外文關鍵詞: | Ionic Liquids, 1-Octanol/Water Partition Coefficient, Duffusion Coefficient |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在一般藥物製造及精密化學品工業上的有機合成反應中,大部分皆在液相中做反應,而其主要的廢棄物就是廢溶劑,而這些溶劑往往是有毒性、揮發性高、可燃性高和不易回收再使用。所以科學家近來正積極發展新溶劑來改善目前污染性高的製程,而常溫離子熔液(Room Temperature Ionic Liquids)即為其中一種新興的溶劑。
為了探討離子熔液一但流失到自然環境的水中時影響生物體的情形,本研究測量了兩個物理化學性質:其在正辛醇/水中的分配係數和其對水的擴散係數。我們利用傳統相平衡方法與OECD(Organization for Economic Co-operation and Development)所定義的Shake Flask Method去量測特定離子熔液之正辛醇/水的分配係數。由實驗結果可以知道大部分離子熔液的正辛醇/水分配係數是小於1,相較一般有機溶劑(正辛醇/水分配係數大於1),不易累積在生物體中;但隨分子量增加,正辛醇/水分配係數會增加。
另外我們利用Taylor dispersion擴散實驗求出離子熔液在水中擴散係數值。離子熔液對水擴散係數約為10-9 m/sec 與一般鹽類和有機溶劑接近,隨者著分子量增加而變小。我們亦測量了[BMIM][PF6]在甲醇中之擴散係數值並與文獻中之全影像法的比較,結果相近。此外我們亦使用文獻密度配合Wilke-Chang關聯法、及文獻及測量之導電度配合Nernst-Hartley估算法來關聯實驗數據,發現離子熔液對水擴散係數與密度及導電度的函數關係與理論相符,但絕對數值則有差異。
1. Sheldon, R.A. (1993) "The Role of Catalysis in Waste Minization." In Precision Process Technology: Perspectives for Pollution Prevention, eds M.P.C. Weijnen & A.A.H. Drinkenburg. Kluwer, Dordrecht, 125-138
2. 曾憲文 (2000)“積極處理廢溶劑 經部特急件報院: 將排除「廢棄物清理法」相關約束 爭取由工業局直接認定有能力廠 商緊急介入”, 中國時報, 財經焦點,第六版
3. Seddon, K.R. (1997) " Ionic Liquids for Clean Technology." J. Chem. Tech. Biotechnol.", 68, 351-356
4. Earle, M.J. and Seddon, K.R. (2000) "Ionic Liquids : Green Solvents for The Future." Pure Appl. Chem., 72, 1391-1398
5. Holbrey, J.D. and Rogers, R.D. (2002) "Green Chemistry and Ionic Liquids - Synergies and Ironies." In Ionic Liquids; Industrial Applications to Green Chemistry, Rogers, R. D.; Seddon, K. R. (Eds.); ACS Symposium Series 818; American Chemical Society: Washington DC, 2-14.
6. Bonh□te, P., Dias, A.P., Papageorgiou, N., Kalyanasundaram, K., and Gra1tzel, M., (1996) "Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts." Inorg. Chem., 35, 1168-1178
7. Germany Solvent Innovation GmbH
(http://www.solvent-innovation.com/Englisch/index2.htm)
8. Welton, T. (1999) "Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis." Chem. Rev., 99, 2071-2083
9. Bowlas, C.J., Bruce, D.W., and Seddon, K.R., (1996) "Liquid-crystalline Ionic Liquid." Chem. Commun., 14, 1625-1626
10. Takuya, N. and Nobuo, K. (2003) "Interfacial Synthesis of Hollow TiO2 Microspheres in Ionic Liquids." J. Am. Chem. Soc., 125, 6386-6387
11. Hagiwara, R. and Ito, Y. (2000) "Room Temperature Ionic Liquid of Alkyl-imidazolium Cation and Fluoroanions." J. Fluorine Chem., 105, 221-227
12. Fuller, J., Carlin, R.T., and Osteryoung, R.A. (1997) "The Room Temperature Ionic Liquid 1-Ethyl-3-methylimidazolium Tetrafluoroborate : Electrochemical Couples and Physical Properties." J. Electrochem. Soc. 144, 3881-3886
13. Huddleston, J.G., Willauer, H.D., Swatloski, R.P., Visser A.E., and Rogers, R.D. (1998) "Room Temperature Ionic Liquids as Novel Media for ‘Clean’ Liquid-liquid Extraction." Chem. Commun., 16, 1765-1766
14. Blanchard, L.A. and Brennecke, J.F. (2001) "Recovery of Organic Products from Ionic Liquids Using Supercritical Carbon Dioxide." Ind. Eng. Chem. Res., 40, 287-292
15. 陳佳佩 (2000) “離子熔液和水的相平衡”, 國立清華大學化學工程研究所碩士論文。
16. Tse, G. and Sander, S.I. (1994) "Determination of Infinite Dilution Activity Coefficient and 1-Octanol/Water Partition Coefficient of Volatile Organic Pollutants." J. Chem. Eng. Data, 39, 354-357
17. OECD Guideline for Testing of Chemicals-Partition Coefficient (n-octanol/water): Shake Flask Method. Adopted by the Council on 27th July 1995.
(http://www.oecd.org/dataoecd/17/35/1948169.pdf)
18. Taylor, G. (1953) "Dispersion of Soluble Matter in Solvent Flowing Slowly through A Tube." Proc. R. Soc. Lond., Ser. A, Math. phys. sci., 219, 186-203
19. Probstein, R.F. (1989); Physicochemical Hydrodynamics; Butterworth Publishers:Boston, 82-96
20. Baldauf, W. and Knapp, H. (1983) "Measurements of Diffusivities in Liquids by The Dispersion Method." Chem. Eng. Sci., 38, 1031-1037
21. Alizadeh, A., Nieto de Castro, C.A., and Eakeham, W.A. (1980) "The Theory of the Taylor Dispersion Technique for Liquid Diffusivity Measurement." Int. J. Thermophys., 1, 243-284
22. Harned, H.S. and Hildreth, C.L. "The Differential Diffusion Coefficients of Lithium and Sodium Chlorides in Dilute Aqueous Solution at 25℃." J. Amer. Chem. Soc., 73, 650-652
23. Lyons, P.A. and Riley, J.F. (1954) "Diffusion Coefficients for Aqueous Solutions of Calcium Chloride and Cesium Chloride at 25 ℃.", J. Am. Chem. Soc., 76, 5216-5220.
24. Richter, J., Leuchter, A., and Gro□er, N. (2003) "Digital Image Holography for Diffusion Measurements in Molten Salt and Ionic Liquids-Method and Fast Result." J. Mol. Liq., 103–104, 359–370
25. Perry, R.H., Green, D.W. and Maloney, J.O. (1984); Perry's Chemical Engineers' Handbook; McGraw-Hill: New York, 3-(258-259)
26. Tyn, M.T. and Calus, W.F. (1975) "Temperature and Concentration Dependence of Mutual Diffusion Coefficients of Some Binary Liquid Systems." J. Chem. Eng. Data., 20, 310-316
27. Wilke, C.R. and Chang, P. (1955) "Correlation of Diffusion Coefficients in Dilute Solutions." AICHE J., 1, 264-270
28. Robinson, R.A. and Stokes, R.H. (1959); Electrolyte Solutions; Butterworth Publishers: London,
29. Shugar, G.J. and Dean, J.A. (2003); Chemist’s Ready Reference Handbook; Mc-Graw-Hill: New York, 5-96
30. Shedlovsky, T., (1932) "An Equation for Electrolytic Conductance.", J. Am. Chem. Soc., 54, 1405-1411