簡易檢索 / 詳目顯示

研究生: 王聖皓
Wang, Sheng-Hao
論文名稱: 社會環境對於果蠅壽命及行為之探討
The Effect of Social Environment on Health and Behavior of Drosophila Melanogaster
指導教授: 郭崇涵
Kuo, Tsung-Han
口試委員: 汪宏達
Wang, Horng-Dar
焦傳金
Chiao, Chuan-Chin
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 系統神經科學研究所
Institute of Systems Neuroscience
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 36
中文關鍵詞: 果蠅社會環境壽命行為
外文關鍵詞: drosophila, social environment, lifespan, behavior
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 社會環境是指由周圍生物及其之間的相互作用所組成的環境,在調節動物行為與生理中扮演了重要的角色。模式生物黑腹果蠅(Drosophila melanogaster)在與其同類互動時可以表現出多樣化的社交行為,因而成為良好的研究對象。近期的研究顯示,社會環境會對果蠅帶有的各種特徵造成顯著的影響,但不同的社會環境對果蠅壽命、行為或生理的影響相當複雜因而需要被更深入的研究。在這篇論文裡,我們將目標果蠅放入三種不同的社會環境:獨居、與短命果蠅共住跟與老年果蠅共住,並觀察對其壽命、環境抗壓能力以及各種行為之影響。我們的結果顯示,與群居的果蠅相比,獨居果蠅表現出更長的壽命和更強的環境抗壓與爬行能力;與短命果蠅共住的目標果蠅在行為、環境抗壓與壽命上,都有著較差的表現;而與老年果蠅共住的目標果蠅,也擁有較差的求偶與環境抗壓能力和較短的壽命。結合以上發現,我們的結果提供了新的證據指出:不同的社會環境會使果蠅的行為、生理及壽命產生顯著的影響。


    Social environments composed of surrounding creatures and their interactions, play important roles to regulate animal behaviors or physiology. Fruit flies, Drosophila melanogaster, performs various social behaviors during interactions with conspecifics. Recent studies have shown that social environments could affect multiple traits in flies. However, the influences of different social environments to the lifespan, behavior or physiology of individuals are very complicated and remain to be studied. In this report, we examined aging, stress resistance and behavior in flies under three different social environments, social isolation, cohousing with short-lived social partners, or cohousing with old social partners. Our results showed that social isolated fruit flies have longer lifespan, improved stress resistances and climbing activity compared to grouped house fruit flies. Cohousing with short-lived donors significantly decreased behavioral performances, stress resistances and lifespan. Flies living with old partners also showed worse performance in courtship behavior, stress resistance, and aging. Together, our findings provide new evidences that different social environments could have pronounced impacts on fly behavior, physiology and aging.

    Acknowledgements …………………………………………………………….... i Abstract …………………………………………………………………………. ii 摘要 ……………………………………………………………………………... iii Contents ……………………………………………………………………..…. iv Introduction …………………………………………………………………….. 1 Materials and Methods ………………………………………………………… 4 Results Social isolation leads to longer lifespan and better stress resistance ………... 9 Social isolation has no effect on most of behaviors ………………………... 11 The effect of shorter lifespan partners on lifespan and stress resistance ….. 13 The effect of shorter lifespan partners on behavior ……………………….. 15 The effect of old partners on lifespan and stress resistance of Canton-S …. 17 The effect of old partners on behaviors of Canton-S ……………………... 19 The effect of old partners on lifespan and stress resistance of yw ………... 21 Discussions The influence of social isolation ………………………………………….. 24 The influence of short-lived donor ………………………………………... 25 The influence of old donor ………………………………………………... 25 The ratio between control and experimental groups ………………………. 26 Potential reasons that cause the effect of different social partners ………... 27 Conclusion ………………………………………………………………… 28 Supplements …………………………………………………………………… 29 References ……………………………………………………………………... 31

    Agrawal, Pavan; Chung, Phuong; Heberlein, Ulrike; Kent, Clement (2019): Enabling
    cell-type-specific behavioral epigenetics in Drosophila: a modified high-yield
    INTACT method reveals the impact of social environment on the epigenetic
    landscape in dopaminergic neurons. In BMC biology 17 (1), p. 30. DOI:
    10.1186/s12915-019-0646-4.
    Agrawal, Pavan; Kao, Damian; Chung, Phuong; Looger, Loren L. (2020): The
    neuropeptide Drosulfakinin regulates social isolation-induced aggression in
    Drosophila. In The Journal of experimental biology 223 (Pt 2). DOI:
    10.1242/jeb.207407.
    Amiri, Shayan; Haj-Mirzaian, Arya; Rahimi-Balaei, Maryam; Razmi, Ali; Kordjazy,
    Nastaran; Shirzadian, Armin et al. (2015): Co-occurrence of anxiety and
    depressive-like behaviors following adolescent social isolation in male mice;
    possible role of nitrergic system. In Physiology & behavior 145, pp. 38–44. DOI:
    10.1016/j.physbeh.2015.03.032.
    Apfelbeck, Beate; Raess, Michael (2008): Behavioural and hormonal effects of social
    isolation and neophobia in a gregarious bird species, the European starling
    (Sturnus vulgaris). In Hormones and behavior 54 (3), pp. 435–441. DOI:
    10.1016/j.yhbeh.2008.04.003.
    Beauchamp, Guy (2016): Function and structure of vigilance in a gregarious species
    exposed to threats from predators and conspecifics. In Animal Behaviour 116,
    pp. 195–201. DOI: 10.1016/j.anbehav.2016.04.008.
    Brenman-Suttner, Dova B.; Yost, Ryley T.; Frame, Ariel K.; Robinson, J. Wesley;
    Moehring, Amanda J.; Simon, Anne F. (2020): Social behavior and aging: A fly
    model. In Genes, brain, and behavior 19 (2), e12598. DOI: 10.1111/gbb.12598.
    Cacioppo, John T.; Ernst, John M.; Burleson, Mary H.; McClintock, Martha K.;
    Malarkey, William B.; Hawkley, Louise C. et al. (2000): Lonely traits and
    concomitant physiological processes: the MacArthur social neuroscience studies.
    In International Journal of Psychophysiology 35 (2-3), pp. 143–154. DOI:
    10.1016/s0167-8760(99)00049-5.
    Carazo, Pau; Green, Jared; Sepil, Irem; Pizzari, Tommaso; Wigby, Stuart (2016):
    Inbreeding removes sex differences in lifespan in a population of Drosophila
    melanogaster. In Biology letters 12 (6). DOI: 10.1098/rsbl.2016.0337.
    Chakraborty, Tuhin S.; Gendron, Christi M.; Lyu, Yang; Munneke, Allyson S.;
    DeMarco, Madeline N.; Hoisington, Zachary W.; Pletcher, Scott D. (2019):
    Sensory perception of dead conspecifics induces aversive cues and modulates
    lifespan through serotonin in Drosophila. In Nature communications 10 (1),
    p. 2365. DOI: 10.1038/s41467-019-10285-y.
    Chen, Selby; Lee, Ann Yeelin; Bowens, Nina M.; Huber, Robert; Kravitz, Edward A.
    (2002): Fighting fruit flies: a model system for the study of aggression. In
    Proceedings of the National Academy of Sciences of the United States of
    America 99 (8), pp. 5664–5668. DOI: 10.1073/pnas.082102599.
    Cole, Steven W. (2014): Human social genomics. In PLoS genetics 10 (8), e1004601.
    DOI: 10.1371/journal.pgen.1004601.
    Dalerum, Fredrik; Lange, Henrik; Skarpe, Christina; Rooke, Tuulikki; Inga, Berit;
    Bateman, Philip W. (2008): Foraging competition, vigilance and group size in
    two species of gregarious antelope. In South African Journal of Wildlife
    Research 38 (2), pp. 138–145. DOI: 10.3957/0379-4369-38.2.138.
    Dawson, Erika H.; Bailly, Tiphaine P. M.; Dos Santos, Julie; Moreno, Céline;
    Devilliers, Maëlle; Maroni, Brigitte et al. (2018): Social environment mediates
    cancer progression in Drosophila. In Nature communications 9 (1), p. 3574.
    DOI: 10.1038/s41467-018-05737-w.
    Demas, Gregory E.; Johnson, Corey; Polacek, Kelly M. (2004): Social interactions
    differentially affect reproductive and immune responses of Siberian hamsters. In
    Physiology & behavior 83 (1), pp. 73–79. DOI: 10.1016/j.physbeh.2004.06.025.
    Drapeau, Mark David; Cyran, Shawn A.; Viering, Michaela M.; Geyer, Pamela K.;
    Long, Anthony D. (2006): A cis-regulatory sequence within the yellow locus of
    Drosophila melanogaster required for normal male mating success. In Genetics
    172 (2), pp. 1009–1030. DOI: 10.1534/genetics.105.045666.
    Ellis, Lucy B.; Kessler, Seymour (1975): Differential posteclosion housing
    experiences and reproduction in Drosophila. In Animal Behaviour 23, pp. 949–
    952. DOI: 10.1016/0003-3472(75)90119-0.
    Ferguson, Christopher J.; Averill, Patricia M.; Rhoades, Howard; Rocha, Donna;
    Gruber, Nelson P.; Gummattira, Pushpa (2005): Social isolation, impulsivity and
    depression as predictors of aggression in a psychiatric inpatient population. In
    The Psychiatric quarterly 76 (2), pp. 123–137. DOI: 10.1007/s11089-005-2335-
    1.
    Flintham, Ewan O.; Yoshida, Tomoyo; Smith, Sophie; Pavlou, Hania J.; Goodwin,
    Stephen F.; Carazo, Pau; Wigby, Stuart (2018): Interactions between the sexual
    identity of the nervous system and the social environment mediate lifespan in
    Drosophila melanogaster. In Proceedings. Biological sciences 285 (1892). DOI:
    10.1098/rspb.2018.1450.
    Ganguly-Fitzgerald, Indrani; Donlea, Jeff; Shaw, Paul J. (2006): Waking experience
    affects sleep need in Drosophila. In Science (New York, N.Y.) 313 (5794),
    pp. 1775–1781. DOI: 10.1126/science.1130408.
    Grippo, Angela J.; Cushing, Bruce S.; Carter, C. Sue (2007): Depression-like
    behavior and stressor-induced neuroendocrine activation in female prairie voles
    exposed to chronic social isolation. In Psychosomatic medicine 69 (2), pp. 149–
    157. DOI: 10.1097/PSY.0b013e31802f054b.
    Hassaneen, Ehab (2015): Effect of yellow white Mutation on the Circadian
    Locomotor Activity of the Fruit Fly Drosophila melanogaster: A Comparison to
    Canton S Wild-Type. In Catrina: The International Journal of Environmental
    Sciences 13 (1), pp. 45–52. Available online at https://cat.journals.ekb.eg/article_18378_37782fe71d84f016eccd1a4511071374.
    pdf.
    Hawkley, Louise C.; Capitanio, John P. (2015): Perceived social isolation,
    evolutionary fitness and health outcomes: a lifespan approach. In Philosophical
    transactions of the Royal Society of London. Series B, Biological sciences 370
    (1669). DOI: 10.1098/rstb.2014.0114.
    Hermes, Gretchen L.; Delgado, Bertha; Tretiakova, Maria; Cavigelli, Sonia A.;
    Krausz, Thomas; Conzen, Suzanne D.; McClintock, Martha K. (2009): Social
    isolation dysregulates endocrine and behavioral stress while increasing malignant
    burden of spontaneous mammary tumors. In Proceedings of the National
    Academy of Sciences of the United States of America 106 (52), pp. 22393–22398.
    DOI: 10.1073/pnas.0910753106.
    Hoffmann, Ary A. (1990): The influence of age and experience with conspecifics on
    territorial behavior in Drosophila melanogaster. In J Insect Behav 3 (1), pp. 1–12.
    DOI: 10.1007/BF01049191.
    Iliadi, Konstantin G.; Boulianne, Gabrielle L. (2010): Age-related behavioral changes
    in Drosophila. In Annals of the New York Academy of Sciences 1197, pp. 9–18.
    DOI: 10.1111/j.1749-6632.2009.05372.x.
    Iliadi, Konstantin G.; Iliadi, Natalia N.; Boulianne, Gabrielle L. (2009): Regulation of
    Drosophila life-span: effect of genetic background, sex, mating and social status.
    In Experimental gerontology 44 (8), pp. 546–553. DOI:
    10.1016/j.exger.2009.05.008.
    Keesey, Ian W.; Koerte, Sarah; Khallaf, Mohammed A.; Retzke, Tom; Guillou,
    Aurélien; Grosse-Wilde, Ewald et al. (2017): Pathogenic bacteria enhance
    dispersal through alteration of Drosophila social communication. In Nature
    communications 8 (1), p. 265. DOI: 10.1038/s41467-017-00334-9.
    Kim, Yong-Kyu; Phillips, Dennis R.; Chao, Taina; Ehrman, Lee (2004):
    Developmental isolation and subsequent adult behavior of Drosophila
    paulistorum. VI. Quantitative variation in cuticular hydrocarbons. In Behavior
    genetics 34 (4), pp. 385–394. DOI: 10.1023/B:BEGE.0000023644.87050.1a.
    Krstic, Dimitrije; Boll, Werner; Noll, Markus (2013): Influence of the White locus on
    the courtship behavior of Drosophila males. In PloS one 8 (10), e77904. DOI:
    10.1371/journal.pone.0077904.
    Kuo, Tsung-Han; Yew, Joanne Y.; Fedina, Tatyana Y.; Dreisewerd, Klaus; Dierick,
    Herman A.; Pletcher, Scott D. (2012): Aging modulates cuticular hydrocarbons
    and sexual attractiveness in Drosophila melanogaster. In The Journal of
    experimental biology 215 (Pt 5), pp. 814–821. DOI: 10.1242/jeb.064980.
    Leech, Thomas; McDowall, Laurin; Hopkins, Kevin P.; Sait, Steven M.; Harrison,
    Xavier A.; Bretman, Amanda (2020): Social environment drives sex and age-
    specific variation in Drosophila melanogaster microbiome composition and
    predicted function. In bioRxiv DOI: 10.1101/2020.01.07.895631.
    Leech, Thomas; Sait, Steven M.; Bretman, Amanda (2017): Sex-specific effects of
    social isolation on ageing in Drosophila melanogaster. In Journal of insect
    physiology 102, pp. 12–17. DOI: 10.1016/j.jinsphys.2017.08.008.
    Levine, Joel D.; Funes, Pablo; Dowse, Harold B.; Hall, Jeffrey C. (2002): Resetting
    the circadian clock by social experience in Drosophila melanogaster. In Science
    (New York, N.Y.) 298 (5600), pp. 2010–2012. DOI: 10.1126/science.1076008.
    Massey, Jonathan H.; Chung, Daayun; Siwanowicz, Igor; Stern, David L.; Wittkopp,
    Patricia J. (2019): The yellow gene influences Drosophila male mating success
    through sex comb melanization. In eLife 8. DOI: 10.7554/eLife.49388.
    Matsuo, Takashi (2018): Effect of social condition on behavioral development during
    early adult phase in Drosophila prolongata. In Journal of ethology 36 (1), pp. 15–
    22. DOI: 10.1007/s10164-017-0524-x.
    McNeill, Lorna Haughton; Kreuter, Matthew W.; Subramanian, S. V. (2006): Social
    environment and physical activity: a review of concepts and evidence. In Social
    science & medicine (1982) 63 (4), pp. 1011–1022. DOI:
    10.1016/j.socscimed.2006.03.012.
    Modlinska, Klaudia; Stryjek, Rafał; Chrzanowska, Anna; Pisula, Wojciech (2018):
    Social environment as a factor affecting exploration and learning in pre-juvenile
    rats. In Behavioural processes 153, pp. 77–83. DOI:
    10.1016/j.beproc.2018.05.010.
    Monier, Magdalena; Nöbel, Sabine; Isabel, Guillaume; Danchin, Etienne (2018):
    Effects of a sex ratio gradient on female mate-copying and choosiness in
    Drosophila melanogaster. In Current zoology 64 (2), pp. 251–258. DOI:
    10.1093/cz/zoy014.
    Nilsen, Steven P.; Chan, Yick-Bun; Huber, Robert; Kravitz, Edward A. (2004):
    Gender-selective patterns of aggressive behavior in Drosophila melanogaster. In
    Proceedings of the National Academy of Sciences of the United States of
    America 101 (33), pp. 12342–12347. DOI: 10.1073/pnas.0404693101.
    Nöbel, Sabine; Allain, Mélanie; Isabel, Guillaume; Danchin, Etienne (2018): Mate
    copying in Drosophila melanogaster males. In Animal Behaviour 141, pp. 9–15.
    DOI: 10.1016/j.anbehav.2018.04.019.
    Nonogaki, Katsunori; Nozue, Kana; Oka, Yoshitomo (2007): Social isolation affects
    the development of obesity and type 2 diabetes in mice. In Endocrinology 148
    (10), pp. 4658–4666. DOI: 10.1210/en.2007-0296.
    Parrish, J. K.; Edelstein-Keshet, L. (1999): Complexity, pattern, and evolutionary
    trade-offs in animal aggregation. In Science (New York, N.Y.) 284 (5411),
    pp. 99–101. DOI: 10.1126/science.284.5411.99.
    Proudfoot, K. L.; Weary, D. M.; LeBlanc, S. J.; Mamedova, L. K.; Keyserlingk, M.
    A. G. von (2018): Exposure to an unpredictable and competitive social
    environment affects behavior and health of transition dairy cows. In Journal of
    dairy science 101 (10), pp. 9309–9320. DOI: 10.3168/jds.2017-14115.
    Reeves, Rusty; Tamburello, Anthony (2014): Single cells, segregated housing, and
    suicide in the New Jersey Department of Corrections. In The journal of the
    American Academy of Psychiatry and the Law 42 (4), pp. 484–488.
    Rohlfs, Marko; Hoffmeister, Thomas S. (2004): Spatial aggregation across ephemeral
    resource patches in insect communities: an adaptive response to natural enemies?
    In Oecologia 140 (4), pp. 654–661. DOI: 10.1007/s00442-004-1629-9.
    Ruan, Hongyu; Wu, Chun-Fang (2008): Social interaction-mediated lifespan
    extension of Drosophila Cu/Zn superoxide dismutase mutants. In Proceedings of
    the National Academy of Sciences of the United States of America 105 (21),
    pp. 7506–7510. DOI: 10.1073/pnas.0711127105.
    Sethi, Sachin; Lin, Hui-Hao; Shepherd, Andrew K.; Volkan, Pelin C.; Su, Chih-Ying;
    Wang, Jing W. (2019): Social Context Enhances Hormonal Modulation of
    Pheromone Detection in Drosophila. In Current biology : CB 29 (22), 3887-
    3898.e4. DOI: 10.1016/j.cub.2019.09.045.
    Simon, A. F.; Chou, M-T; Salazar, E. D.; Nicholson, T.; Saini, N.; Metchev, S.;
    Krantz, D. E. (2012): A simple assay to study social behavior in Drosophila:
    measurement of social space within a group. In Genes, brain, and behavior 11
    (2), pp. 243–252. DOI: 10.1111/j.1601-183X.2011.00740.x.
    Siva-Jothy, Jonathon A.; Vale, Pedro F. (2019): Viral infection causes sex-specific
    changes in fruit fly social aggregation behaviour. In Biology letters 15 (9),
    p. 20190344. DOI: 10.1098/rsbl.2019.0344.
    Versace, Elisabetta; Caffini, Matteo; Werkhoven, Zach; Bivort, Benjamin L. de
    (2020): Individual, but not population asymmetries, are modulated by social
    environment and genotype in Drosophila melanogaster. In Scientific reports 10
    (1), p. 4480. DOI: 10.1038/s41598-020-61410-7.
    Wallace, Deanna L.; Han, Ming-Hu; Graham, Danielle L.; Green, Thomas A.; Vialou,
    Vincent; Iñiguez, Sergio D. et al. (2009): CREB regulation of nucleus
    accumbens excitability mediates social isolation-induced behavioral deficits. In
    Nature neuroscience 12 (2), pp. 200–209. DOI: 10.1038/nn.2257.
    Xiao, Chengfeng; Qiu, Shuang; Robertson, R. Meldrum (2017): The white gene
    controls copulation success in Drosophila melanogaster. In Scientific reports 7
    (1), p. 7712. DOI: 10.1038/s41598-017-08155-y.
    Zhang, S. D.; Odenwald, W. F. (1995): Misexpression of the white (w) gene triggers
    male-male courtship in Drosophila. In Proceedings of the National Academy of
    Sciences of the United States of America 92 (12), pp. 5525–5529. DOI:
    10.1073/pnas.92.12.5525.

    QR CODE