研究生: |
羅冠昕 Guan-Xin Luo |
---|---|
論文名稱: |
利用奈米圖案模版探討硫化鎘暨發光性高分子之量子侷限效應 Quantum Confinement Effect of CdS and Light-emitting Polymers in Diblock Copolymer Templates |
指導教授: |
何榮銘
Rong-Ming Ho |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 98 |
中文關鍵詞: | diblock copolymer 、CdS 、PS-PLLA 、composites 、thin film 、nanoporous |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Polystyrene-b-poly(L-lactide) (PS-PLLA) diblock copolymer thin films with well-oriented cylindrical microdomains normal to the substrate were prepared by spin coating. After hydrolysis of PLLA, well-oriented hexagonal cylinder (HC) nanochannel arrays over large area were obtained; providing a simple and efficient path to prepare nanoporous templates for pore-filling with optoelectronic materials such as CdS and light-emitting polymers to examine the quantum confinement effect. To achieve efficient pore-filling process, specific treatment on the polymeric templates was carried out. There are two key features in the improvement of pore-filling efficiency: (1) controlling wetting by decreasing the contact angle of solution for substrate; (2) releasing air-block effect by air-extracting apparatus. Oxygen plasma treatment was conducted first to create hydrophilic PS templates so as to sequester the solution of functional gold nanoparticles/aqueous into porous templates by capillary force. On the other hand, in contrast to the pore-filling methods by modifying the substrate with the assistance of the air-extracting apparatus, methanol is used as co-solvent to dissolve the CdAc2.2H2O; the wettability of the methanol solution on the PS templates can also be improved without RIE treatment. To avoid air blocking effect, the filling process was carried out in a vacuum holder whereas ultrasonic process can also be applied to introduce the solution into the templates. Because of HC nanochannel arrays and the cylindrical nanochannels truly span the entire thickness of the films; a special experiment (directed capillary force) is designed for pore-filling of Cd2+ into template. The formation of CdS nanostructures were then achieved by using H2S(g) as reduction agent at which the cylinder morphology of CdS nanocrystals were obtained as evidenced by transmission electron microscopy and electron diffraction. Interesting spectroscopic results were found in ultraviolet (UV) and potoluminescence (PL) spectra; both exhibiting a higher efficiency of emission for the CdS confined in the templates as compared to the CdS nanoparticles formed directly on cadmium thin films. We speculate that the increase in intensity is attributed to the significant increase of filling CdS nanocrystals in the nanoporous template. By contrast, a blue-shift for light-emitting polymers confined in the templates as compared to the thin films of light-emitting polymers was observed. TEM image shows that hexagonal light-emitting polymers nanoarrays were obtained from the contrast by bromines (Br) loading on repeat unit of light-emitting polymers. In addition, as evidenced by cryo high resolution transmission (HR-TEM) and energy dispersive x-ray analysis (EDX), the dark contrast indicates the signal of Br element. Furthermore, the mapping image of Br element from field-emission scanning electron microscopy (FE-SEM) EDX indicates that the Br elements distributes uniformly in PS template.
Chapter 7
References
1. Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418.
2. Philip, D.; Stoddart, J. F. Angew. Chem. Int. Ed. 1996, 35, 1155.
3. Clark, T. D.; Tien, J.; Duffy, D. C.; Paul, K. E.; Whitesides, G. M. J. Am. Chem. Soc. 2001, 123, 7677.
4. Jakubith, S.; Rotermund, H. H.; Engel, W.; von Oertzen, A.; Ertl, G. Phys. Rev. Lett. 1990, 65, 3013.
5. Whitesides, G. M.; Ismagilov, R. F. Science 1999, 284, 89.
6. Bate, F. S.; Fredrickson, G. H.; Annu. Rev. Phys. Chem. 1990, 41, 525.
7. Park, C.; Yoon, J.; Thomas, E. L. Polymer, 2003, 44, 6725.
8. Muthukumar M.; Ober C. K.; Thomas E. L. Science 1997, 277, 1225.
9. Lodge, T. P. Macromol Chem Phys 2003, 204, 265.
10. Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 7641.
11. Gast, A. P.; Hall, C. K.; Russel, W. B. J Colloid Interface Sci 1983, 96, 251.
12. Bates, F. S.; Fredrickson, G. H. Phys Today 1999, 52, 32.
13. Fasolka, M.; Mayes, A. M. Ann. Rev. Mater. Res. 2001, 31, 323.
14. Zheng, W.; Wang, Z, -G. Macromolecules 1995, 28, 7215.
15. Abetz, V.; Supramolecular polymers. New York: Marcel Dekker, 2000. Chapter 6.
16. Hashimoto, T.; Tsutsumi, K.; Funaki, Y. Langmuir 1997, 13, 6869.
17. Yang, P.; Wirnsberger, G.; Huang, H. C.; Cordero, S. R.; McGehee, M. D.; Scott, B.; Deng, T.; Whitesides, G. M.; Chmelka, B. F.; Buratto, S. K.; Stucky, G. D. Science 2000 , 287, 465.
18. Unger, M. A.; Chou, H. P.; Thorsen, T.; Scherer, A.; Quake, S. R. Science 2000, 288, 113.
19. Dagata, J. A.; Schneir, J.; H.; Harary, H. H.; Evans, C. J.; Postek, M. T.; Bennett, J. Appl. Phys. Lett. 1990, 56, 2001.
20. D. M. Eigler and E. K. Schweizer, Nature, vol. 344, p. 524,1990.
21. Snow, E. S.; Campbell, P. M.; Perkin, F. K. Pro. IEEE 1997, 85, 601.
22. Broers, A. N.; Molzen, W.; Cuomo, J.; Wittels, N. Appl. Phys. Lett. 1976, 29, 596.
23. Martin, J.I.; Velez, M.; Morales, R. J. Magn. Mater. 2002, 249, 156.
24. Hyde S, Anderson S, Larsson K, Blum Z, Landh T, Lidin S, Ninham BW. The language of shape. New York: Elsevier; 1997.
25. Ball P. Made to Measure. Biomaterials, 1997. New York, Chapter 4, Only natural.
26. Rapaport H, Moller G, Knobler CM, Jensen TR, Kjaer K, Leiserowitz L, Tirrell DA. J Am Chem Soc 2002, 124, 9342.
27. van Dijk, M. A.; van den Berg, R. Macromolecules 1995, 28, 6773.
28. Yang, X. M.; Peter, R. D.; Nealey, P. F.; Solak, H. H.; Cerrina, F. Macromolecules 2000, 33, 9575.
29. Hashimoto, T.; Bodycomb, J.; Funaki, Y.; Kimishima, K. Macromolecules 1999, 32, 952.
30. De Rosa, C.; Park, C.; Thomas, E. L.; Lotz, B. Nature 2000, 405, 433.
31. De Rosa, C.; Park, C.; Lotz, B.; Wittmann, J. C.; Fetters, L. J.; Thomas, E. L. Macromolecules 2000, 33, 4871.
32. Keller, A.; Pedemonte, E.; Wilmouth, F.M.; Kolloid, Z. Z. Polymer 1970, 238, 385.
33. Keller A, Pedemonte E, Willmouth, FM. Nature , 1970, 225, 538.
34. Honeker, C. C.; Thomas, E. L.; Albalak, R. J.; Hajduk, D. A.; Gruner, S. M.; Capel, M. C. Macromolecules 2000, 33, 9395.
35. Kim, G.; Libera, M. Macromolecules 1998, 31, 2569.
36. Rong-Ming Ho, Wen-Hsien Tseng, Hui-Wen Fan, Yeo-Wan Chiang, Chu-Chieh Lin, Bao-Tsan Ko, Bor-Han Huang. Polymer, 2005, 46, 9362.
37. 功能性金及硫化鎘奈米粒子:合成、排列與物理性質之研究, 施勝銘, 臺灣大學材料科學與工程學研究所博士論文.
38. Trindade, T.; O'Brien, P.; Pickett, N. L.; Chem. Mater. 2001, 13, 3843.
39. Pankive, J. I. Optical processes in semiconductors; Dover Publications Inc.: New York, 1970.
40. Yoffe, A. D. Adv. Phys. 1993, 42, 173.
41. Henglein, A. Chem Rev. 1989,89,1861.
42. Steigerwald, M. L.; Brus, L. E. Acc. Chem. Res. 1990, 23, 183.
43. bawendi, M. G.; Steigerwald, M. L.; brus, L. E. Annu. Rev. Phys. Chem. 1993, 41, 477.
44. Weller, H. Angew. Chem., Int. Ed. Engl. 1993, 32, 41.
45. Weller, H. Adv. Mater. 1993, 5, 88.
46. Hagfeldt, A.; Cratzel, M. Chem. Rev. 1995, 95, 49.
47. Fendler, J. H.; Meldrum, F. C. Adv. Mater. 1995, 95, 49.
48. Alivisatos, A. P. J. Phys. Chem. 1996, 100, 13226.
49. Brus L, 1999, “Chemical approaches to semiconductor nanocrystals and nanocrystal materials”, Nanotechnology, Chapter 6, Timp G Edited, Springer, New York.
50. Forster, S.; Antonietti, M., Adv. Mater. 1998, 10,195
51. Heng, Yu.; Hingbo, Li,; Richard, A. L.; Wang, L. W.; William, E. B., Nature Materials 2003, 2, 517.
52. Wang, C. W. ; Moffitt, G. Langmuir 2004, 20, 11784.
53. Park, M.; Harrison, C.; Chaikin, P. M.; Register, R. A.; Adamson, D. H. Science 1997, 276, 1401.
54. Fink Y, Urbas AM, Bawendi BG, Joannopoulos JD, Thomas EL. J Lightwave Tech ,1999, 17, 1963.
55. Bockstaller, M.R.; Mickiewicz, R.A.; Thomas, E.L., Adv. Mater. 2005,17,1331.
56. Yadong Yin, Yu Lu, Byron Gates, and Younan Xia. J. Am. Chem. Soc. 2001, 123, 8718-8729
57. Cui, Y.; Bjo1rk, M.T.; Liddle, J.A.; Sonnichsen, C.; Boussert, B.; Alivisatos, A.P. Nano Lett., 2004, 4,1093.
58. Misner M.J.; Skaff, H.; Emrick, T.; Russell T.P. Adv. Mater., 2003, 15, 221.
59. Zhang, Q.; Xu, T.; Butterfield, D.; Misner, M.J.; Ryu, D.Y.; Emrick, T.; Russell. T.P. Nano Lett., 2005, 5, 357.
60. Ko, B.T.; Lin C.C. J. Am. Chem. Soc. 2001, 123, 7973.
61. Ho, R.M.; Chiang, Y.W.; Tsai, C.C.; Lin, C.C.; Ko, B.T.; Huang, B.H.; J. Am. Chem. Soc. 2004, 126, 2704.
62. Tao, L.; Luan, B.; Pan, C.Y. Polymer 2003, 44, 6725
63. Zalusky, A.S.; Olayo-Valles, R.; Wolf, J.H.; Hillmyer, M.A. J. Am. Chem. Soc. 2002, 124, 12761.
64. http://66.102.7.104/search?q=cache:tFOZgDKmE2wJ:www.memsnet.org/mems/processes/etch.html+reaction+ion+etching&hl=zh-TW
65. http://www.ipfdd.de/research/res12/adsa_p.html
66. Ameen, A. P. ploym. Degrad. Stab. 1996, 51, 179.
67. Traill, R. J.; Boyle, R. W. Am. Mineral. 1955, 40, 555.
68. Routkevitch, D.; Bigioni, T.; Moskovits, M.; Xu, J. M. J. Phys.Chem. 1996, 100, 14037.
69. Alivisatos, A. P. Science 1996, 271, 933.
70. Rossetti, R.; Hull, R.; Gibson, J. M.; Brus, L. E. J. Chem. Phys. 1985, 82, 552.
71. Bhongale, C.J.; Hsu, C.S. Angew. Chem. Int. Ed. 2006, 45, 1404–1408.