簡易檢索 / 詳目顯示

研究生: 高士唐
Kao, Shih-Tang
論文名稱: 中壓電纜劣化與診斷技術之研究
Monitoring the Degradation of Medium-Voltage Cables
指導教授: 張廖貴術
Chang-Liao, Kuei-Shu
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 81
中文關鍵詞: 電纜老化老化機制絕緣電阻介電損失局部放電
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   隨著石化燃料日益枯竭,核能發電再度受到世界各國的重視,除了興建核能機組外,舊有機組也計畫延長使用年限,因此設備好壞,將是機組延長運轉之關鍵,其中電纜也是評核項目之一。目前我國核能電廠評估電纜好壞,主要依據電纜外觀及量測絕緣電阻,但此兩項評估方法並不能完全診斷電纜缺陷,及評斷電纜劣化狀態,為此本研究將藉由多項電性檢測方法來診斷電纜劣化。
      研究方法係藉以人為方式加速電纜老化,包括輻射、高溫、高濕,以及生物效應,並定期以絕緣電阻、介電損失及局部放電等電性檢測方式監測,以瞭解此三種檢測方法對電纜缺陷與瑕疵的辨識能力,最後由實驗結果分析與核電廠實際搜集/量測資料比較,檢討各項檢測方式之優劣,找出最適宜的診斷方法。
      依據量測數據整理及分析結果,電纜會隨著不同環境,其老化行為也有所不同,濕熱老化普遍存在於電纜所處環境中,隨著時間累積使電纜逐漸老化,但可透過加載與溫度控制來降低濕熱老化影響,輻射作用除了直接破壞絕緣結構外,長時間低劑量之照射,將使絕緣發生變化,與其他效應結合後,加速電纜老化,生物效應乃直接破壞電纜絕緣厚度,隨著不同老化程度電纜,其破壞效果也有所不同。而在絕緣電阻、介電損失及局部放電等三種檢測方法中,絕緣電阻為最簡便檢測方式,但易受檢測條件影響;介電損失檢測相對絕緣電阻檢測麻煩,但透過靜電容量與散逸因素追蹤,以及其對外加電壓之斜率變化更能有效監測電纜整體劣化趨勢;局部放電可線上檢測電纜,且對外部缺陷及接近壽命終期之電纜最為敏感,但易受於背景環境及量測距離影響;因此若能有效結合三種檢測方法優勢,將可適時診斷電纜劣化。


    摘要......i 致謝......iii 目錄......iv 圖目錄......vii 表目錄......ix 第一章 緒論......1 1.1 研究動機與目的......1 1.2 研究範圍......2 1.3 研究概要......2 第二章 文獻回顧......4 2.1 電纜種類......4 2.2 電纜結構......6 2.3 電纜絕緣......7 2.4 電纜老化......11 2.5 電纜檢測......15 2.6 結論......20 第三章 實驗方法與檢測技術之建立......21 3.1 材料......21 3.2 老化實驗......21 3.3 絕緣電阻檢測......22 3.4 介電損失檢測......25 3.5 局部放電檢測......28 3.6 結論......33 第四章 15kV電纜老化特性評估......41 4.1 輻射老化環境......41 4.2 濕熱老化環境......41 4.3 輻射與濕熱老化環境......43 4.4 生物效應......44 4.5 環境因子與檢測方法......44 4.6 結論......45 第五章 核二廠中壓電纜老化監測......64 5.1 中壓電纜......64 5.2 絕緣電阻分析......64 5.3 局部放電檢測......66 5.4 結論......67 第六章 結論與建議......77 6.1 結論......77 6.2 建議......78 參考文獻......79

    [1]IEEE Std. 323, “Standard for Qualifying Class 1E Equipment for Nuclear Power Generating Stations”, 1983.
    [2]IEEE Std. 383, “Standard for Type Test of Class 1E Electric Cables, Field Splices, and Connections for Nuclear Power Generating Stations”, 1974.
    [3]IEEE Std. 400-2001, “IEEE Guide for Field Testing and Evaluation of the Insulation of Shielded Power Cable Systems”, 2001.
    [4]NSTC WSSIWG, “Review of Federal Programs for Wire System Safety. National Science and Technology Council, Wire System Safety Interagency Working Group. Final Report”, November 2000.
    [5]NRC Regulatory Issue Summary, “Requalification Program Test Results For OKONITE OKOLON Single-Conductor Bounded-Jacket Cable”, 2002-11
    [6]EPRI, “Medium-Voltage Cables in Nuclear Plant Applications-State of Industry and Condition Monitoring”, 1003664 Final Report, October 2003
    [7]NEI 06-05, “Medium Voltage Underground Cable White Paper”, 2006.
    [8]于景豐,「電力電纜應用技術問答」,中國水利水電出版社,2007
    [9]「電線要覽」,三井電纜手冊
    [10]河南電力技師學院,「電力電纜工」,中國電力出版社,2007
    [11]張瑞村,「數位局部放電量測應用於高壓電纜終端接頭絕緣狀態之評估」,台灣科技大學碩士論文,2005
    [12]IEC 60502-2, “Power Cables With Extruded Insulation and Their Accessories for Rated Voltages”, 2005
    [13]NEA/CSNI/R(2004)12, “Research Efforts Related to Wire System Aging in NEA Member Countries”, Nuclear Energy Agency, 2004.
    [14]T. Tanaka, T. Fukuda, S. Suzuki, Y. Nitta, “Water trees in Cross-linked Polyethylene Power Cables”, IEEE Transaction on Dielectrics and Electrical Insulation, Vol.28,No.6,1993.
    [15]R. Vogelsang, B. Fruth, T. Farr, K. Frohlich, “Detection of Electrical Tree Propagation by Partial Discharge Measurements”, 15th International Conference on Electrical Machines, August 2002.
    [16]EPRI TR-103834-P1-2, “Effects of Moisture on the Life of Power Plant Cables”, Final Report, 1994.
    [17]NRC GL 2007-01, “Inaccessible or Underground Power Cable Failures That Disable Accident Mitigation Systems or Cause Plant Transients”, U.S. Nuclear Regulatory Commission, February 2007.
    [18]McCune,S.L., “A Statistical aging model for XLPE-Insulated Medium voltage distribution cable”, IEEE Annual Report, Conference on Electrical Insulation and Dielectric Phenomena,1994.
    [19]Reg. Guide 1.89, Rev. 1, “Environmental Qualification of Certain Electrical Equipment Important to Safety for Nuclear Power Plants”, U.S. Nuclear Regulatory Commission, 1984.
    [20]ANSI/IEEE Std 943-1986, “IEEE Guide for Aging Mechanisms and Diagnostic Procedures in Evaluating Electrical Insulation Systems”.
    [21]K. T. Gillen, R. A. Assink and R. Bernstein, “Nuclear Energy Plant Optimization (NEPO) Final Report on Aging and Condition monitoring of Low-Voltage Cable Materials”, Sandia National Laboratories Report SAND2005-7331, November 2005.
    [22]EPRI TR-106108, “Diagnostic Matrix for Evaluation of Low-voltage Electrical Cables”, November 1997.
    [23]S.V. Nikolajevic, “The behaviour of water in XLPE and EPR cables and its influence on the electric characteristics of insulation”, IEEE Transactions on Power Delivery Vol. 14 No. 1, January 1999.
    [24]徐耀東,「核電廠橡膠電纜劣化與監測技術之研究」,清華大學博士論文,2006
    [25]R. Bartnikas, K. D. Srivastava, “Power and Communication Cables- Theory and Applications”, IEEE Dielectrics and Electrical Insulation Society, 1999.
    [26]Dr F.H. Kreuger, “Partial Discharge Detection in High-Voltage Equipment”, Butterworths.
    [27]IEC 60076-11, “Power Transformers-Dry- Type Transformers”, 2004.
    [28]A.von Engel, “Ionized Gases”, 2nd. Clarendon Press, Oxford, 1965.
    [29]陳國光,「溫度及溼度對25kV XLPE 電纜絕緣特性之影響」,中原大學碩士論文,2006
    [30]IEC 60270, “High-Voltage Test Techniques-Partial Discharge Measurement”, 2000.
    [31]吳廣寧、張冠軍、劉剛,「高電壓技術」,機械工業出版社,2007

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE